期刊文献+

基于遗传算法的航空发动机多目标优化PID控制 被引量:20

Multi-objective optimization of aeroengine PID control based on multi-objective genetic algorithms
下载PDF
导出
摘要 提出采用多目标遗传算法,对航空发动机PID控制器参数进行优化设计.使用先进多目标遗传算法NSGA-Ⅱ对航空发动机PID控制器进行参数整定.针对某型航空发动机在飞行包线内的飞行状态进行控制器参数的优化选取,仿真结果表明,与传统手动试凑调节PID控制器参数进行比较,转速阶跃响应过程的性能指标得到了很好的优化,获得了令人满意的优化效果. Multi-objective genetic algorithms were applied to the parameter optimization of aeroengine proportional integral derivative (PID) controller. The PID controller parameters of aeroengine were optimized by multi-objective genetic algorithms NSGA- Ⅱ . In this pa- per the controller parameters of an aeroengine was optimized, and the simulation results indicate that compared with the traditional optimization method, the speed controller system shows good dynamic and stable performance. The result is satisfactory.
作者 李玥 孙健国
出处 《航空动力学报》 EI CAS CSCD 北大核心 2008年第1期174-178,共5页 Journal of Aerospace Power
基金 国家自然科学基金(50576033) 航空科学基金(04C52019)
关键词 航空 航天推进系统 多目标优化 遗传算法 PID控制 航空发动机 aerospace propulsion system multi objective optimization genetic algorithm proportional integral derivative (PID) control aeroenglne
  • 相关文献

参考文献8

  • 1孙健国.面向21世纪航空动力控制展望[J].航空动力学报,2001,16(2):97-102. 被引量:71
  • 2Horn J, Nafpliotis N. Muhiobjective optimization using the niched pareto genetic algorithm [R]. IlliGAL Report 93005, Illinois Urbana, Champaign: Genetic Algorithms Laboratory, Univer-sity of Illinois, 1993, 6.
  • 3Fonseca C M, Fleming P J. Muhiobjective genetic algorithms made easy: Selection, sharing and mating restriction [R]. Genetic Algorithms in Engineering Systems: Innovations and Appliications, IEE, 1995.
  • 4Srinivas N, Deb K. Muhiobjective optimization using nondominated sorting in genetic algorithms [J]. Evolutionary Computation,1994, 2(3):221-248.
  • 5Zitzler E, Thiele L. An evolutionary algorithm for multiobjective optimization: The strength pareto ap-proaeh [R]. Technical Report 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland: May 1998.
  • 6Knowles J D, Corne D W. The pareto archived evolution strategy:A new baseline algorithm for multiobjeetive optimization [C]//Proceedings of the 1999 Congress on Evolutionary Computation. Washington,USA:[s. n. ], 1999.
  • 7Deb K,Agrawal S, Pratap A, et al. A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-Ⅱ [C]//Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference. Paris, France:[s. n.], 2000.
  • 8Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the strength pareto evolutionary algorithm [R]. Technical Re port 103, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland: May 2001.

二级参考文献5

共引文献70

同被引文献164

引证文献20

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部