期刊文献+

图类αK_(α,α)UβCP(b)中的一类特殊整谱图 被引量:2

A Special Type of the Integral Graphs Which Belong to the Class αK_(α,α)UβCP(b)
下载PDF
导出
摘要 图G是一个简单,图G的补图记为G,如果G的谱完全由整数组成,就称G是整谱图,鸡尾酒会图CP (n)=K_(2n)-nK_2(K_(2n)是完全图)和完全二部图K_(a,a)都是整谱图.u_1表示图类αK_(α,α)UβCP(b)的一个主特征值,本文确图了当u_1=2b+1时,图类αK_(α,α)UβCP(b)中的所有的整谱图. Let G be a simple graph and let ^-G denote its complement. A graph G is called integral if its spectrum consists entirely of integers. Cocktail party graphs CP(n)=K2-nK2 and complete bipartite graphs Kαα, all are integral graphs^[1]. let ^-μ1 denote one of the mian eigenvalues in graphs ^-αKα,αUβCP(b) .In this paper, all integral graphs in ^-αKα,αUβCP(b),with ^-μ1=2b+1,are determined.
作者 景占策
出处 《数学理论与应用》 2007年第4期27-29,共3页 Mathematical Theory and Applications
关键词 整谱图 主特征值 鸡尾酒会图 完全二部图 integral graphs main eigenvalues cocktail party graphs complete bipartite graphs
  • 相关文献

参考文献7

  • 1侯耀平,周后卿.恰有两个主特征值的树[J].湖南师范大学自然科学学报,2005,28(2):1-3. 被引量:19
  • 2Mirko Lepovi?.On integral graphs which belong to the class $$\overline {\alpha K_a \cup \beta K_b } $$[J].Journal of Applied Mathematics and Computing (-).2004(1-2)
  • 3Mirko Lepovi?.On Integral Graphs Which Belong to the Class[J].Graphs and Combinatorics.2003(4)
  • 4M.Lepovic.Some results on graphs with exactly tow main eigenval-ues[].UnivBeogra PublElektro -tehn(SerMat).2001
  • 5M.Lepovic.On integral graphs which belong to the class(?)[].JApplMath& Computing.2004
  • 6M.Lepovic.In integral graphs which belong to the class(?)[].Graphs and Combinatorics.2003
  • 7M.lepovic.On integral graphs which belong to the class (?)[].Discrete Mathematics.2004

二级参考文献6

  • 1CVETKOVI(C) D, FOWLER P W. A group-theoretical bound for the number of main eigenvalues of a graph[ J]. J Chem inf Comput Sci,1999,39:638-641.
  • 2CVETKOVI(C) D, ROWLINSON P, SIMIC S. Eigenspaces of graphs[M]. Cambrige: Cambridge University Press, 1997.
  • 3HAGOS E M. Some results on graph spectra[J]. Linear Algebra and Its Applications,2002,356:103-111.
  • 4LEPOVIC(C) M. A note on graphs with two main eigenvalues[J]. Kragujevac J Math, 2002, (24) :43-53.
  • 5CVETKOVIC D, DOOB M, SACHS H. Spectra of graphs:Theory and applications, 3rd revised and enlarged edition[ M]. Heidelberg,Leipzig: Barth, 1995.
  • 6GR(U)NEWALD S. Harmonic trees[J]. Appl Math Letters, 2004,15(8): 1 001-1 004.

共引文献18

同被引文献14

  • 1颜娟,许克祥.正则图的变换图的谱[J].高校应用数学学报(A辑),2008,23(4):476-480. 被引量:2
  • 2侯耀平,周后卿.恰有两个主特征值的树[J].湖南师范大学自然科学学报,2005,28(2):1-3. 被引量:19
  • 3Balinska T, Simi'c S K. The nonregular, bipartite, integral graphs with maximum degree 4. Part I: basic properties[J].Discrete Math, 2001,236(1) : 13-24.
  • 4Bussemaker F C, Cvetkovitc D. There are exactly 13 connected cubic integral graphs[J]. Publ Elektrotech Fak Ser Mat Fiz, 1976(544) :43-48.
  • 5Hic P, Nedela R. Balanced integral trees[J]. Math Slovaca, 1998,48(5):429-445.
  • 6Biggs N . Algebraic Graph Theory [M]. 2nd Edition. Cambridge :Cambridge University Press, 1993.
  • 7Cvetkovi'c D, Doob M, Gutman I, et al. Recent Results in the Theory of Graph Spectra[M]. New York:North-Holland- Amsterdan, 1988.
  • 8Cvetkovi'c D, Doob M, Sachs H. Spectra of Graphs Theory and Application[M]. New York.. Acdemic Press,1980.
  • 9李学良 林国宁.关于整树问题[J].科学通报,1987,32(11):813-816.
  • 10景占策,侯耀平.■类整谱图[J].湖南师范大学自然科学学报,2008,31(1):31-34. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部