摘要
在准地转运动的非线性稳定性的研究中,先验不等式起着至关重要的作用.所得到的不等式越精细,得到的非线性稳定性的结论就越好.本文主要分两个部分,第一部分综合性地介绍了变分原理以及利用变分原理及分析的技巧得到一系列重要的最佳不等式的方法.这些不等式中有些是已有的结果,只是用更直接的方法重新得到,还有一些小等式是首次发现的.第二部分以准地转运动的非线性稳定性的研究为主线,介绍了有关的理论;利用第一部分的数学基础理论对已有的准地转运动的非线性稳定性定理作了统一的处理,使得在论证思路上更为清晰,在证明方法上更为简洁.
The a priori estmates play an important role in the study of nonlinear stability of quasigeostophic motions. The tighter the estimate, the better the nonlinear stability criterion is. There are two main parts in this paper. In the first part, the variational principle was introduced and a series of best possible inequalities were derived by the principle and analysis, in which some known results were recovered by more direct and simpler mothods, and some of which were newly obtained. In the second part, relevent theory of quasigeostophic motions was introduced and some known results of nonlinear stability of quasigeostophic motions were recovered uniformly with simpler and clearer reduction and treatment.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第1期1-19,共19页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金项目(10671071)
地理信息科学教育部重点实验室(LGISEM)项目
大气科学和地球流体力学数值模拟国家重点实验室(LASG)项目
关键词
变分法
最佳不等式
非线性稳定性
准地转
variational method
best possible inequality
nonlinear stability
quasi-geostrophic