期刊文献+

路面裂缝图像处理算法研究 被引量:33

Pavement Crack Diseases Recognition Based on Image Processing Algorithm
下载PDF
导出
摘要 为了避免传统人工视觉裂缝检测方法的耗力、耗时、不精确、影响交通、危险、花费高等缺点,提出了一种新的基于图像处理技术的路面裂缝类病害自动识别算法。识别分为两个步骤:首先以一个5×5的窗口为基准,在这个窗口中确定9种不同的掩膜模板,对有噪音的路面图像进行平滑和增强;然后基于阈值分割理论,采用最大类间、类内距离准则对图像进行阈值分割,提取图像上的裂缝特征。最后对采集的200幅路面裂缝图像进行了平滑和分割试验研究,和Robison等常用的平滑模板相比,对图像进行增强的同时较好地保护了裂缝边缘。在对平滑后的图像进行分割当中,和Hough变换、数学形态学等分割算法进行了对比研究,结果表明了该算法在精度、速度和可靠性方面具有一定的优势。 Conventional visual and manual road crack detection method is labor-consuming, non-precise, dangerous, costly and also it can affect transportation.To avoid these shortcomings, an automatic road crack detection., algorithm based on image process was presented. It includes two steps: firstly, using nine different templates in a 5 × 5 window to smooth and enhance noise pavement image; secondly, based on threshold segmeentafion method, adopting criterion of maximum class distance to segment processed image and extract crack character. In the end, the foregoing smooth and segmentation algorithm on 200 pavement crack images were tested. Comparing with other accustomed templates, the images are enhanced and the crack edge is protected. Further comparing with segmentation methods of Hough transform and mathematic morphology, the presented method shows definite advantage in precision, processing speed and reliability.
出处 《公路交通科技》 CAS CSCD 北大核心 2008年第2期64-68,共5页 Journal of Highway and Transportation Research and Development
基金 交通部西部交通建设科技资助项目(200431800054)
关键词 道路工程 裂缝识别 图像处理 路面裂缝 阈值分割 road engineering crack identification image processing pavement crack threshold segmentation
  • 相关文献

参考文献9

  • 1MIYOJIM M, CHENG H D. Novel System for Automatic Pavement Distress Detection [J] .ASCE, 1998, 12 (3): 145- 152.
  • 2MEIGNEN D, BERNADET M, BRIAND H. One Application of Neural Networks for Detection of Defects Using Video Data Bases: Identification of Road Distresses [J] . Proceedings Databaseand Expert Systems Applications, 1997, 9 (8): 459-464.
  • 3李晋惠.用图像处理的方法检测公路路面裂缝类病害[J].长安大学学报(自然科学版),2004,24(3):24-29. 被引量:45
  • 4肖旺新,张雪,黄卫,严新平.路面破损自动识别的一种新算法[J].公路交通科技,2005,22(11):75-78. 被引量:12
  • 5CHENG H D, SHI X J, GLAZIER C. Real-time Image Thresholding Based on Sample Space Reduction and Interpolation Approach [ J ] .American Society of Civil Engineers (ASCE), 2003, 17 (4) : 264- 272,
  • 6GONZALEZ R C, WOODS R E, EDDINS S L.Digital Image Processing Using MATLAB [ M]. Beijing: Electronics Industry Press, 2004.
  • 7余天洪,贾阳,王荣本,郭烈.基于熵最大化图像分割的直线型车道标识识别及跟踪方法[J].公路交通科技,2006,23(6):112-115. 被引量:3
  • 8SUN Bo-cheng, QIU Yan-jun. Automatic Identification of Pavement Cracks Using Mathamatic Morphology [ C] //International Conference on Transportation Engineering. America: American Society of Civil Engineers Press, 2007 : 1 783 - 1 788.
  • 9顾兴宇,董侨,倪富健.连续配筋水泥混凝土路面裂缝发展规律研究[J].公路交通科技,2007,24(6):37-40. 被引量:22

二级参考文献23

  • 1罗诗途,罗飞路,张玘,王艳玲.基于梯度调整的矩不变自动阈值图像分割算法[J].电子技术应用,2004,30(6):11-13. 被引量:12
  • 2肖旺新,张雪,黄卫.三种路面破损分类算法的仿真比较[J].交通运输工程与信息学报,2004,2(3):53-60. 被引量:2
  • 3Robinson G S. Edge detection by compass gradient masks [J]. CGIP , 1997,6 (5) : 492 - 501.
  • 4KennethR Castkeman.数字图像处理[M].北京:电子工业出版社,2002.389-391.
  • 5Lee, Byoung Jik. Development of an Integrated Digital Pavement Imaging and Neural Network System [D] . A Dissertation Submitted to the Faculty of the University of Iowa, 2001.
  • 6Siriphan Jitprasithsiri. Development of a New Digital Pavement Image Processing Algorithm for Unified Crack Index Computation [D] .A Dissertation Submitted to the Faculty of the University of Utah, 1997.
  • 7Miller M G, Matsakis N E, Viola P A. Learning from one Example Through Shared Densities on Transforms [J] . Computer Vision and Pattern Recognition, 2000, 1 (13): 464-471.
  • 8YUE WANG,DINGGANG SHEN,EAM KHWANG TEOH.Lane detection and tracking using B-Snake[J].Image Vision Comput,2004,22(4):269-280.
  • 9JOEL C MCCALL,MOHAN M TRIVEDI.An Integrated,Robust Approach to Lane Marking Detection and Lane Tracking[C].Parma:Proc.IEEE Intelligent Vehicle Symposium,2004.
  • 10MEI CHEN,TODD JOCHEM,DEAN POMERLEAU.AURORA:A Vision-Based Roadway Departure Warning System[J].IEEE Conference on Intelligent Robots and Systems,Human Robot Interaction and Cooperative Robots,1995,8(1):243-248.

共引文献74

同被引文献298

引证文献33

二级引证文献359

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部