摘要
针对分水岭算法对微弱边缘和噪声非常敏感、容易导致过分割现象的问题,提出综合运用分水岭算法和基于区域的模糊C均值聚类的图像分割方法.与单独使用分水岭方法相比,该方法不仅利用区域的灰度信息,而且考虑了区域间的空间信息.实验结果表明,本方法能有效地对图像进行分割,克服了分水岭算法的过分割问题.
Watershed algorithm often causes oversegmentation because of its high sensitivity to the weak edge and the noise. To overcome its limitation, watershed algorithm was combined with region-based fuzzy C-means clustering for image segmentation. Compared with watershed algorithm, not only the grayscale information but also each region's spatial information is considered in this method. Experimental results show that this method can efficiently overcome the oversegmentation problem.
出处
《天津工业大学学报》
CAS
2008年第1期53-55,共3页
Journal of Tiangong University
基金
天津市自然科学基金资助项目(07JCYBJC13700)
关键词
图像分割
分水岭算法
模糊C均值聚类
过分割
image segmentation
watershed algorithm
fuzzy C-means clustering
oversegmentation