期刊文献+

一种基于Phong物体光照模型的阴影检测算法 被引量:5

A Shadow Detection Algorithm Based on Phong Lighting and Radiosity Model
下载PDF
导出
摘要 针对目前运动目标检测算法中常将阴影误检为前景目标的问题,提出一种基于Phong物体光照模型的阴影检测算法。基于Phong物体光照模型,我们对场景中象素的亮度值进行分析,通过定义一个亮度相对变化量,推导出他在整个阴影区域是比较稳定的,所以在一个(5×5)的模板上用协方差来衡量这种稳定性,从而得到第一个阴影判决式。又推导出阴影区域亮度相对变化量随时间的变化保持相对稳定,设计一个滤波模板来增大目标区域的不稳定性,从而得到第二个阴影判决式。最后结合以上二个阴影判决式进行阴影检测,并对实验结果进行定性和定量的评估。与前人提出算法比较,本文提出的算法在阴影检测率和区分率等方面都得到了提高,具有较强的鲁棒性。 Focusing on the problem that shadows cast by moving objects are detected incorrectly as foreground targets by most of the current moving objects detection algorithm,a method of shadow detection based on the Phong lighting and radiosity model is proposed. Based on the Phong model, we analyze the brightness of pixels in image sequences, the Relative Change of Brightness (RCB) in shadowed regions is proved to be more stable than moving objects regions,it is measured by the covariance of RCB of pixels on a template (5 * 5) so as to acquire the first discriminant. As the RCB in shadowed regions is stable in image sequences,a filter template is designed to make the RCB more unstable in regions of moving objects,so the second dis- criminant is presented. Shadow detection is carried out by fusing the two discriminant formulas described above, experimental results are evaluated quantitatively and qualitatively,and show that our method is robust and offers more advantage over other algorithms presented previously on detection rate and discrirrination rate.
出处 《现代电子技术》 2008年第5期124-127,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60334010 60475029)
关键词 PHONG光照模型 阴影检测 运动目标检测 智能监控 Phong lighting and radiosity model shadow detection moving object detection intelligent monitoring
  • 相关文献

参考文献13

  • 1Salvador E,Cavallaro A, Ebrahimi T. Shadow Identification and Classification Using Invariant Color Models[A]. In: Proceedings of 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing[C]. Salt Lake City, USA: IEEE Computer Society, 2001 : 1 545 - 1 548.
  • 2Xu L Q, Landabaso J L, Pardas M. Shadodw Removal with Bolb - based Morphological Reconstruction for Error Correction[A]. In: Proceedings of 2005 IEEE International Conference on Acoustics, Speech, Signal Proeessing[C]. 2005 : 729 - 732.
  • 3Haritaoglu I, Harxood D, Kavis L S. W4:Real -time Surveillance of People and Their Activities[J]. IEEE Rrans. Pattern Analysis and Machine Intelligence, 2000,22 (8) : 809 - 830.
  • 4Horprasert T, Harwood D,Davis L S. A Statical Approach for Real - time Robust Background Subtraction and Shadow Detection[A]. In: Proc. IEEE Int'l Conf. Computer Vision '99 Frame - tate Workshop[C]. 1999.
  • 5Cucchiara R,Grana C, Neri G,et al. The Sakbot System for Moving Object Detection and Tracking[J]. Video- Based Surverillence Systems - Computer Viasion and Distributed Processing, 2001 : 145 - 157.
  • 6Liu lipin,Xu Jianmin,Wen Huiying. A New Vehicle Shadow Handler Based on Tecture Invariance[J]. Journal of Wuhan University of Technology, 2005,29(6) : 1 005 - 1 008.
  • 7温惠英,徐建闽,刘利频.VEHICLE SEGMENTATION AND SHADOW HANDLER BASED ON EXTREMUM IMAGE[J].Transactions of Nanjing University of Aeronautics and Astronautics,2006,23(1):65-71. 被引量:3
  • 8Wang Yang, Tan T, Loe K F. A Probabilistie Method for Foreground and Shadow Segmentation[A]. In: Proceedings of 2003 IEEE International Conference on Image Processing [C]. 2003:937 - 940.
  • 9Chang C J, Hu W F, Hsieh J W,et al. Shadow Elimination for Effeetive Moving Objeet Deteetion with Gaussian Models[A]. In: Proceedings of 16th International Conference on Pattern Reeognition[C]. 2002: 540- 543.
  • 10Phong B T. Illumination for Computer Generated Pictures [J]. Communication of ACM, 1975,18(6) : 311 - 317.

二级参考文献24

  • 1Yang Wang, Tele tong, Kia-Fock Lo. A probabilistic method for foreground and shadow segmentation [ A ].Proceedings of International conference on Image Processing [ C ]. Barcelona, Spain: IEEE Computer Society,2003.3.937 -940.
  • 2Pinel J-M,Nicolas H. Shadows analysis and synthesis in natural video sequences [ A ]. Proceeding of 2002 International Conference on Image Processing[ C ]. Rochester, USA:IEEE Computer Society,2002. 3.Ⅲ-285-Ⅲ-288.
  • 3Gevers t, smeulders A W M. Clour based object recognition [ J ]. Pattern Recognition, 1999,32 (3) :453 - 464.
  • 4Barnard K, Finlayson G. Shadow identification using color ratios [ A ]. Proceeding of the IS & T/SID dight color imaging conference: Color Science, Systems and Applications [ C ]. Scottdale, Arizona: The Society for Imaging Science and Technology,2000.97-101.
  • 5Prati A, Cucchiara R, Mikic I, Trivedi M. Analysis and detection of shadows in video streams.A comparative evaluation[A]. Proceeding of IEEE CVPR [ C ]. Kauai : IEEE Computer Society,2001.2. 571 - 576.
  • 6Phong B T. Illumination for computer generated pictures[ J ]. Communications of aCM, 1975,18 (6) :311 - 317.
  • 7Jiang C, Ward M O, Shadow identification[ A]. Proceedings of 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition [ C ]. Champaign,USA:IEEE Computer Society ,1992, 606 -612.
  • 8Adjouadi M, Image analysis of shadows, depressions,and upright objects in the interpretation of real-world scenes [ A ]. International Conference on Pattern Recognition [ C ]. Paris, France: IEEE Computer Society,1996.834 - 838.
  • 9Huertas A, Nevatia R. Detecting buildings in aerial images[J]. Computer Vision Graphics and Image Processing, 1988,41 (2) :131 - 152.
  • 10Irvin R B, Mckeown D M. Methods for exploiting the relationship between building and their shadows in aerial imagery [ J ]. IEEE Trans, System, Man and Cybemetics, 1989,19 (6) : 1564 - 1575.

共引文献17

同被引文献38

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部