期刊文献+

基于沃尔什特征和增强型Cascade算法的人脸检测 被引量:3

Fast Face Detection Based on Walsh Feature and Enhanced Cascade Algorithm
下载PDF
导出
摘要 在训练基于AdaBoost和Cascade算法的人脸检测器时,由于使用了大量的Haar-Like特征,所以训练过程消耗了大量的时间和存储空间,为此该文提出用较少的沃尔什特征来代替大量的Haar-Like特征,可以较大幅度地降低特征之间的冗余,节约训练时间和存储空间。针对Nesting Cascade完全继承前层分类器的不足之处,提出一种具有自主和继承双重特性的增强型Cascade算法。MIT-CBCL库上的实验表明:沃尔什特征可以加快训练速度,而增强型Cascade算法有助于提高测试精度。最后,使用训练好的人脸检测器对MIT+CMU前视人脸测试集进行了测试,结果证明该文方法比相应的对比方法更加有效。 The training time cost is very expensive when mass Haar-Like features are used to obtain the face detector based on AdaBoost and Cascade algorithm. The paper presents a Walsh feature to replace Haar-Like feature in the training process, which can decrease the redundancy among the features and save the training time and memory. Aiming at the shortage of entirely inheriting prior classifters in the Nesting Cascade algorithm, an enhanced Cascade algorithm that has independence characteristic and inheritance speciality is proposed. The experimental results from MIT-CBCL database show that the Walsh feature can accelerate the training process and the enhanced Cascade algorithm can increase the test precision. A trained face detector is used to detect faces in the MIT + CMU test set, and the detected results demonstrate that the proposed algorithm is more effective than other correlative methods.
出处 《南京理工大学学报》 CAS CSCD 北大核心 2008年第1期60-64,72,共6页 Journal of Nanjing University of Science and Technology
基金 江苏省高技术研究基金项目(BG2005008) 国家自然科学基金重点项目(60632050)
关键词 沃尔什特征 ADABOOST 增强型Cascade 人脸检测 Walsh feature AdaBoost enhanced Cascade face detection
  • 相关文献

参考文献9

  • 1Freund Y, Schapire R E. Experiments with a new boosting algorithm [ A]. Proceedings of the 13th Conference on Machine Learning [ C ]. USA : International Machine Learning Society, 1996. 148 - 156.
  • 2Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions [ J ]. Machine Learning, 1999, 37(3) : 297 -336.
  • 3李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 4Liu C, Shum H. Kullback-Leibler Boosting [ A ]. Proceedings of IEEE Conference on CVPR' 2003 [ C]. Washington, D. C. , USA: IEEE Computer Society, 2003. 587 - 594.
  • 5Li S Z, Zhang Z. Floatboost learning and statistical face detection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (9) : 1 112 - 1 123.
  • 6Huang C, Ai H Z, Li Y, et al. High-performance rotation invariant multiview face detection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007, 29 (4) : 671 - 686.
  • 7Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ A ]. Proceedings of IEEE Conference on CVPR' 2001 [ C ]. Washington, D. C. , USA:IEEE Computer Society,2001. 511 -518.
  • 8Xiao R, Zhu L, Zhang H J. Boosting chain learning for object detection [ A ]. Proceedings of IEEE Conference on ICCV' 2003 [ C ]. Washington, D. C. , USA : IEEE Computer Society, 2003. 709 - 715.
  • 9Wu B, Ai H Z, Huang C, et al. Fast rotation invariant multi-view face detection based on real AdaBoost [ A ]. Proceedings of IEEE Conference on FGR'2004 [ C ]. Washington, D.C. , USA : IEEE Computer Society, 2004. 79 - 84.

二级参考文献9

  • 1Papageorgiou C P,Oren M,Poggio T.A general framework for object detection//Proceedings of the 6th International Conference on Computer Vision.Bombay,India,1998:555-562
  • 2Schneiderman H,Kanade T.A statistical method for 3D object detection applied to faces and cars//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.USA,2000:746-751
  • 3Rowley H A,Baluja S,Kanade T.Neural network-based face detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):22-38
  • 4Viola P,Jones M.Robust real time object detection//Proceedings of the 2nd International Workshop on Statistical and Computational Theories of Vision.Vancouver,Canada,2001
  • 5Tu Zhuo-Wen,Chen Xiang-Rong,Yuille A.L.,Zhu SongChun.Image parsing:Unifying segmentation,detection,and recognition//Proceedings of the International Conference on Computer Vision.Nice,France,2003:18-25
  • 6Fan Wei,Stolfo S,Zhang Jun-Xin,Chan P.Adacost:Mis classification cost-sensitive boosting//Proceedings of the 16th International Conference on Machine Learning,Bled,Slovenia,1999:97-105
  • 7Ma Yong,Ding Xiao-Qing.Real-time rotation invariant face detection based on cost-sensitive AdaBoost//Proceedings of the IEEE International Conference on Image Processing.Barcelona,Spain,2003,2..921-924
  • 8Viola P,Jones M.Fast and robust classification using asymmetric AdaBoost and a detector cascade//Advances in Neural Information Processing System 14.Cambridge,MA:MIT Press,2002:1311-1318
  • 9Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting.Journal of Computer and System Sciences,1997,55(1):119-139

共引文献52

同被引文献7

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部