期刊文献+

基于自适应波束形成和ICA的消噪系统 被引量:1

Noise cancellation system based on adaptive beamforming and independent component analysis
下载PDF
导出
摘要 介绍了自适应宽带波束形成和快速独立分量分析的基本理论和算法,分析了固定波束形成的理论局限性及自适应宽带波束形成的优越性。提出了一种基于自适应波束形成和独立分量分析的消噪系统,算法显著地抑制了噪声、增强了语音,又具有稳定快速的性能。同时分析了自适应波束形成单元数或者输入信号数对算法性能的影响,对实际应用具有指导意义。 This paper presents a new hybrid noise cancellation scheme employing Adaptive Beamforming and Fast Independent Component Analysis. The method can restrain noise and enhances speech with stability and fast convergence. Furthermore the influence upon this algorithm when the number of units or input signals of adaptive beamforming varies is studied, which is significant to practical application .
出处 《声学技术》 CSCD 北大核心 2008年第1期119-125,共7页 Technical Acoustics
基金 国家自然科学基金资助项目(60272038) 2006年广西研究生教育创新计划项目 广西科学基金(0639028)
关键词 波束形成 负熵 独立分量分析 消噪 beamforming negentropy independent component analysis noise cancellation
  • 相关文献

参考文献11

  • 1林秋华,郑永瑞,殷福亮.基于参考独立分量分析的语音增强方法[J].大连理工大学学报,2006,46(6):915-919. 被引量:7
  • 2范乐昊,邱晓晖,司海飞.基于独立分量分析的噪声消除技术[J].金陵科技学院学报,2006,22(4):45-48. 被引量:3
  • 3焦卫东,杨世锡,吴昭同.基于独立分量分析的噪声消除技术研究[J].浙江大学学报(工学版),2004,38(7):872-876. 被引量:31
  • 4张智林,皮亦鸣,孙志坚.基于独立分量分析的降噪技术[J].电子科技大学学报,2005,34(3):296-299. 被引量:11
  • 5Youngwook Ko, Jeff Foutz. Speech enhancement using microphone arrays[R]. EEE607 Project Report, Spring 2001.
  • 6John E Adcock. Optimal filtering and speech recognition with microphone arrays[D]. The Division of Engineering of Brown University, May 2001.
  • 7Byung-Chul Kim, I-Tai Lu. High resolution beamforming based on the MVDR method[A]. OCEANS 2000 MTS/IEEE Conference and Exhibition[C]. 2000, 2(11-14): 1025-1028.
  • 8A Hyvarinen. New approximations of differential entropy for independent component analysis and projection pursuit [J]. Advance in Neural Information Processing Systems, 1998, 10: 273-279.
  • 9Osamu Hoshuyama, Aldhiko Sugiyama (NEC Corporation). An adaptive microphone array with good sound quality using auxiliary fixed beamformers and Its DSP implementation[A]. ICASSP[C[. 1999, 2: 949-952.
  • 10LIU Tienan, WANG Liguo, XU Baochang, XIE Aihua, ZHANG Hang. Adaptive noise canceler and its applications for systems with time-variant correlative noise [A]. Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on[C]. 2002, 2(10-14): 1412-1415.

二级参考文献31

  • 1[2]Comon P.Independent component analysis,a new concept?[J] Signal Processing,1994,36:287-314.
  • 2[3]Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[J].Neural Component,1997,9(7):1483-1492.
  • 3[4]Lee Te-won.Independent component analysis:theory and application[M].Boston:Kluwer Academic Publishers,1998:42-65.
  • 4LYON R H. Machinery noise and diagnostics [M].Boston : Butterworths Press, 1987: 236 - 243.
  • 5COMON P. Independent component analysis, a new concept? [J]. Signal Processing, 1994, 36: 287- 314.
  • 6PORRILL J, STONE J V, BERWICK J, et al. Analysis of optical imaging data using weak models and ICA[A]. Based on a Workshop Held after ICANN'1999[C]. Finland: [s. n. ], 2000 : 598- 606.
  • 7VIGARIO R, SARELA J, OJA E. Searching for independence in electromagnetic brain waves [A]. Based on a Workshop Held after ICANN'1999 [C]. Finland:[s.n.], 2000: 678-683.
  • 8CARDOSO J F, SOULOUMIAC A. Blind beamforming for non-Gaussian signals [J]. IEE Proceedings F, 1993,140 (6): 362- 370.
  • 9PARRA L, SPENCE C. Convolutive blind separation of non-stationary sources [J]. IEEE Transactions on Speech and Audio Processing, 2000, 8 (3):165-172.
  • 10LEE Te-won. Nonlinear approaches to independent component analysis [R]. California: University of California, 2000.

共引文献44

同被引文献6

  • 1屈微,刘贺平.基于独立分量分析和矢量量化的说话人识别[J].计算机应用,2005,25(10):2401-2403. 被引量:1
  • 2Ozkurt T E, Akgul T. Robust Text-independent speaker identification using bispectrum slice, signal processing and communications applications conference[A]. 2004. Proceedings of the IEEE 12th[C]. 2004, 418-421.
  • 3Deng J, Zheng T F, Song Z J, et al. Using predictive differential power spectrum and subband mel-spectrum centroid for robust speaker recognation in stationary noises[A]. The 4th International Conference on Machine Learning and Cybernetics[C]. 2005, 8: 4846-4851.
  • 4Hyvarinen A. New approximatioils of differential entropy for independent component analysis and projection pursuit [J]. Advance in Neural Information Processing Systems, 1998, 10: 273-279.
  • 5Hyvarinen A. Fast and robust tided-point algorithm for independent component analysis[J]. IEEE Trans on Neural Networks, 1999, 10(3): 626-634.
  • 6Jang Gil-Jin, Yun Seong-Jin, Oh Yung-Hwan. Feature vector transformation using independent component analysis and its application to speaker identification[J]. Euro Speech, 1999, 7(6): 767-770.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部