期刊文献+

几个双矩阵经济管理理性博弈的期望均衡分析 被引量:4

An Analysis of Expected Equilibrium in Economical Management Bi-matrix Rational Games
下载PDF
导出
摘要 关于完全信息静态博弈,有纯Nash均衡、混合Nash均衡和相关均衡等概念。如果每个参与人除了博弈的结构以外其他一无所知是全体参与人的共同知识(称为完全静态的),那么期望均衡是在极大熵准则是全体参与人的共同知识的条件下的一种均衡。本文首先介绍理性博弈及其期望均衡的概念,然后由此分析了在文献中经常出现的一些经济管理博弈的期望均衡的结果,并与混合Nash均衡结果进行比较。说明对于完全静态博弈,当参与人比通常情况下聪明(极大熵准则是他们的共同知识)的时候,其决策结果比混合Nash均衡更为确定和具有理性。 In a static game with complete information, we have the concepts of pure Nash equilibrium, mixed Nash equilibrium and correlated equilibrium. If it is all the players' common knowledge that every player knows nothing except structure of the game, called completely static, then a so called expected equilibrium was defined that is an equilibrium in the case that maximum entropy principle is all the players' common. In this paper, we introduce the concepts of a rational game and its expected equilibrium, then analysis the expected equilibrium in some economical management games in many literatures. We compare the expected equilibrium with mixed Nash equilibrium in these games as well. The results show that for a completely static game the players' decision results are more certain and rational if they are more intelligent, i.e. maximum entropy principle is their common knowledge.
出处 《系统工程》 CSCD 北大核心 2008年第1期106-109,共4页 Systems Engineering
基金 国家自然科学基金资助项目(78970025) 江苏省高校自然科学研究计划项目(05KJD110027)
关键词 极大熵准则 完全静态博弈 混合Nash均衡 期望均衡 Maximum Entropy Principle Completely Static Game Mixed Nash Equilibrium Expected Equilibrium
  • 相关文献

参考文献9

  • 1Jiang D Y. Static, completely static, and rational games of complete information and their different Nash equilibria[J]. International Journal of Innovative Computing, Information and Control, 2008, 4(3).
  • 2Jiang D Y. Equivalent representations of bi-matrix games[J]. International Journal of Innovative Computing,Information and Cootrol.
  • 3Jiang D Y. Neumann-Morgenstern stable set of a finite static strategy game[J]. Journal of Mathematical Control Science and Applications, 2007,1 (2).
  • 4Jaynes E T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106 (4): 620-630.
  • 5Jaynes E T. Prior probabilities[J]. IEEE Transactions on Systems, Science, and Cybernetics, 1968, SSC-4 :227.
  • 6Jiang D Y,Zhang S K. Realizability of expected Nash equilibria of n-person condition games under strong knowledge system[J]. International Journal of Innovative Computing, Information and Conurol, 2006, 2(4):761-770.
  • 7谢识予.经济博弈论[M].上海:复旦大学出版社,2001..
  • 8姜殿玉.数理谋略论——博弈上的计策理论[M].北京:中国文联出版社,2003.
  • 9Shannon C E. A mathematical theory of communication[J]. Bell Sys. Tech. Journal, 1948, 27: 379-423,623-656.

共引文献73

同被引文献37

  • 1何大义,邱菀华.纳什均衡策略的极大熵估计方法[J].北京航空航天大学学报(社会科学版),2004,17(4):49-53. 被引量:4
  • 2姜殿玉,张盛开,丁德文.矩阵对策的Neumann-Shannon对策解[J].系统工程,2005,23(7):17-21. 被引量:3
  • 3姜殿玉,张盛开,丁德文.极大熵准则下n人非合作条件博弈的期望Nash均衡[J].系统工程,2005,23(11):108-111. 被引量:6
  • 4戴威,闫鹏飞,曹阳.Bayes推理在液压系统故障诊断中的应用[J].液压与气动,2007,31(7):55-56. 被引量:5
  • 5拉丰编,王国成,黄涛,等译.经济理论的进展(上)-国际经济计量学会第六届世界大会专集[C],北京:中国社会科学出版社,2001.
  • 6拉丰编,王国成,黄涛,等译.经济理论的进展(下)-国际经济计量学会第六届世界大会专集[C],北京:中国社会科学出版社,2001.
  • 7Neyman, A. , Okada, D.. Strategic entropy and complexity in repeated games [J]. Games and Economic Behavior, 1999,29:191-223.
  • 8Neyman, A. ,Okada,D.. Repeated games with bounded entropy [J]. Games and Economic Behavior, 2000,30:228-247.
  • 9Golan, A. , Katp,L. S. ,Perloff,J. M.. Estimation a mixed strategy employing maximum entropy[Z]. Working paper, University of California Berkeley, 1999.
  • 10Berg,J. , Engel, A.. Matrix games, mixed strategies, and statistical mechanics [J]. physical Review Letters, 1998,81(11) :4999-5002.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部