期刊文献+

等离子体浸没离子注入与沉积合成TiN薄膜的滚动接触疲劳寿命和机械性能 被引量:11

ROLLING CONTACT FATIGUE LIFE AND MECHANICAL PROPERTY OF TiN FILM FABRICATED BY PLASMA IMMERSION ION IMPLANTATION AND DEPOSITION
下载PDF
导出
摘要 采用等离子体浸没离子注入与沉积(PIII&D)技术在AISI 52100轴承钢表面合成了高硬耐磨的TiN薄膜.膜层元素分布、化学组成和表面形貌分别用XRD,XPS表征.合成薄膜前后试样的滚动接触疲劳寿命和摩擦磨损性能分别由球棒疲劳磨损试验机和球-盘磨损试验机测定;疲劳破坏后的微观形貌通过SEM观察;薄膜力学性能经纳米压痕和纳米划痕实验评价.结果表明,TiN膜中还含有少量的TiO_2和Ti,N,O的化台物.在优化条件下,TiN膜层致密均匀,与基体结合良好,纳米硬度和弹性模量分别达到25和350 GPa;最低摩擦系数由基体的0.92下降到0.2.被处理薄膜试件在90%置信区间下的最大L_(10),L_(50),L_a和(?)寿命较基体分别提高了约4.5,1.8,1.3和1.2倍,疲劳寿命的分散性得到了显著改善. TiN hard protective films were fabricated on AISI52100 bearing steel substrate by plasma immersion ion implantation and deposition (PIII&D) technique. The TiN films have been characterized using a variety of test methods. XRD analysis indicated that the TiN film contained a little amount of TiO2 and compounds of Ti, O and N, which has also been identified by XPS. AFM revealed the TiN film to be extremely smooth, very high uniformity and compact density over large areas. The maximum nanohardness and elastic modulus (E) of the sample after deposition of TiC are 25 and 350 GPa, increased by 127.3% and 59.1%, respectively. Ball-on disc result showed that the friction coefficients decrease from 0.92 to 0.2. The treated sample's rolling contact fatigue (RCF) life of the L10,L50,La and -↑L increases by 4:5, 1.8, 1.3 and 1.2 times, respectively. The RCF life scatter extent of treated sample is improved significantly.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2008年第3期325-330,共6页 Acta Metallurgica Sinica
基金 教育部博士点基金20060674002~~
关键词 等离子体浸没离子注入与沉积 TIN薄膜 机械性能 滚动接触疲劳寿命 轴承钢 plasma immersion ion implantation and deposition (PIII&D), TiN film, mechanical property, rolling contact fatigue life, bearing steel
  • 引文网络
  • 相关文献

参考文献8

二级参考文献84

  • 1王福贞.表面沉积技术[M].北京:机械工业出版社,1989.251.
  • 2张立德牟季美.纳米材料和纳米结构[M].科学出版社,2001.260-267.
  • 3[1]Brown I G. Rev. Sci. Instrun., 1994, 65: 3061-3066.
  • 4[2]Hopwood J P, Guarnieri C R, Whitehair S J, et al. J. Vac. Sci. Technol, 1993, A11: 152-158.
  • 5[3]Saitoh H, Yarbrough W A. Appl. Phy. Lett., 1991, 58: 2228-2231.
  • 6[4]Martin P J, Bendavid A. Thin Solid Films, 2001, 394: 1-6.
  • 7[5]Konyashin I, Rabinovich G F, Dodonov A. J. Mater. Sci., 1998, 32: 6029-6038.
  • 8[6]Yan P X, et al. Thin Solid Films, 1993, 232: 204-208.
  • 9[7]Martin P J, Bendavid A, Kinder T J, et al. Surf. Coat. & Technol., 1996, 86: 271-278.
  • 10[8]Martin P J, Bendavid A, Takikawa H. J. Vac. Sci. Technol., 1999, A 17: 351-359.

共引文献72

同被引文献461

引证文献11

二级引证文献80

相关主题

;
使用帮助 返回顶部