摘要
针对BP神经网络在学习速度方面的不足,在Jordan和Elman网络结构的基础上,提出一种带偏差单元的递归网络模型,根据BP算法推导出该网络模型的权系数调整规则,并应用该网络模型进行了蛋白质关联图预测的仿真分析.结果表明,该网络模型的收敛速度比一般BP网络有很大提高,具有一定的实用性.
To deal with the weakness of the BP neural network in learning speed, an Deviation Units Recurrence Neural Network model is presented based on the Jordan and Elman neural network. The weight-regulating method is developed based on BP algorithm. Simulations on fault diagnosis were performed with this neural network model. Experimental results show that the converging speed of this network model is faster than that of the traditional BP network and this model has a good practicability.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2008年第2期265-270,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金重大项目基金(批准号:60433020)
国家自然科学基金(批准号:6017502460773095)
关键词
蛋白质关联图预测
人工神经网络
带偏差递归神经网络
疏水性
二级结构
prediction of protein contact maps
artificial neural network
deviation units recurrence neural network
hydrophobicity
secondary structure