期刊文献+

基于带偏差递归神经网络蛋白质关联图的预测 被引量:1

Prediction of Protein Contact Map Based on Deviation Units Recurrence Neural Network
下载PDF
导出
摘要 针对BP神经网络在学习速度方面的不足,在Jordan和Elman网络结构的基础上,提出一种带偏差单元的递归网络模型,根据BP算法推导出该网络模型的权系数调整规则,并应用该网络模型进行了蛋白质关联图预测的仿真分析.结果表明,该网络模型的收敛速度比一般BP网络有很大提高,具有一定的实用性. To deal with the weakness of the BP neural network in learning speed, an Deviation Units Recurrence Neural Network model is presented based on the Jordan and Elman neural network. The weight-regulating method is developed based on BP algorithm. Simulations on fault diagnosis were performed with this neural network model. Experimental results show that the converging speed of this network model is faster than that of the traditional BP network and this model has a good practicability.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第2期265-270,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金重大项目基金(批准号:60433020) 国家自然科学基金(批准号:6017502460773095)
关键词 蛋白质关联图预测 人工神经网络 带偏差递归神经网络 疏水性 二级结构 prediction of protein contact maps artificial neural network deviation units recurrence neural network hydrophobicity secondary structure
  • 相关文献

参考文献8

  • 1Unnikrishnan K P, Venugopal K P. Alopex: a Correlation-based Learning Algorithm for Feed-forward and Recurrent Neural Networks [ J]. Neural Computation, 1994, 6 (3) : 469-490.
  • 2Pham D T, Karaboga D. Training Elman and Jordan Networks for System Identification Using Genetic Algorithms [ J]. Artificial Intelligence in Engineering, 1999, 13(2) : 107-117.
  • 3Mirny L, Domany E. Protein Fold Recognition and Dynamics in the Space of Contact Maps [ J]. Proteins: Structure, Function and Genetics, 1996, 26(4) : 391-410.
  • 4Fariselli P, Casadio R. A Neural Network Based Prediction of Residue Contacts in Proteins [J]. Protein Eng, 1999, 12(1) : 15-21.
  • 5Park K, Vendruscolo M, Domany E. Toward an Energy Function for the Contact Map Representation of Proteins [ J]. Proteins : Structure, Function and Genetics, 2000, 40(2) : 237-248.
  • 6MacCallum R M. Striped Sheets and Protein Contact Prediction [ J ]. Bioinformatics, 2004, 20Suppl( 1 ) : Ⅰ224-Ⅰ231.
  • 7Kabsch W, Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-bonded and Geometrical Features [J]. Biopolymers, 1983, 22(12): 2577-2637.
  • 8刘健,练继建.基于带有偏差单元的递归神经网络的李家峡拱坝安全监控模型[J].水利水电技术,2004,35(8):108-110. 被引量:1

同被引文献13

  • 1RICHARDSON M,DOMINGOS P.Markov logic networks[J].Ma-chine Learning,2006,62(1):107-136.
  • 2GETOOR L,TASKAR B.Introduction to statistical relational learning[M].Cambridge:MIT Press,2007:339-371.
  • 3FAURE G,BORNOT A,De BREVERN A G.Protein contacts,inter-residue interactions and side-chain modeling[J].Biochimie,2008,90(8):626-639.
  • 4BALDI P,POLLASTRI G,ANDERSEN C A,et al.Matching protein betasheet partners by feedforward and recurrent neural networks[C]//Proc of the8th International Conference on Intelligent for Mo-lecular Biology.2000:25-36.
  • 5CHENG Jian-lin,BALDI P.Three-stage prediction of protein beta-sheets by neural networks,alignments and graph algorithms[J].Bioinformatics,2005,21(1):75-84.
  • 6RICHARDSON M,DOMINGOS P.Markov logic networks[D].Washington DC:University of Washington,2004.
  • 7ANDRIEU C,De FREITAS N,DOUCET A,et al.An introduction to MCMC for machine learning[J].Machine Learning,2003,50(1):5-43.
  • 8DOMINGOS P,KOK S,LOWD D,et al.Markov logic[M]//Probabi-listic Inductive Logic Programming.Berlin:Springer,2008:92-117.
  • 9KOK S,SUMNER M,RICHARDSON M,et al.The Alchemy system for statistical relational AI[R].Washington DC:University of Wash-ington,2007.
  • 10KABSCH W,SANDER C.Dictionary of protein secondary structure:pattern recognition of hydrogen-bonded and geometrical features[J].Biopolymers,1983,22(12):2577-2637.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部