期刊文献+

SLAM问题中特征相关性研究 被引量:2

Correlation between Features in Simultaneous Localization and Map Building (SLAM) Problem
下载PDF
导出
摘要 结合SLAM算法及不确定性分析,对SLAM问题中的特征相关性进行了研究。并在对相关性进行详细深入分析的基础上,得到了特征稀疏的两个标准,进而提出了相关优先的特征稀疏策略,可利用较少的相关性强的特征从而减少大量的计算负担,计算误差却和一般传统方法相当。最后,采用EKF滤波对SLAM进行了仿真,通过多次Monte-Carlo仿真实验结果表明了该方法的有效性。 The correlation problem was studied based on SLAM algorithm and uncertainty analysis. It's well-known that the correlation between features is actually the critical part of the SLAM problem. Maintaining and renewing this correlation information brings a huge computation burden. Therefore, on the basis of having carried out deep analysis on correlation, a new feature sparse tactic named correlation priority was brought forward, which may use less features having strong correlation to cut down large amount of the computation burden, and the computation error of this method can compare with that of some general traditional methods. Finally, the SLAM algorithm was simulated by EKF and the simulation results indicate that this method is valid.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1541-1544,共4页 Journal of System Simulation
基金 国家863计划资助项目(2006AA04Z238)
关键词 同时定位与地图创建(SLAM) 环境特征 相关性 不确定性 计算复杂度 simultaneous localization and map building (SLAM) environment features correlation uncertainty computational complexity
  • 引文网络
  • 相关文献

参考文献11

  • 1R Smith, M Self, P Cheeseman. Estimating uncertain spatial relationships in robotics [M]. I J Cox, G T Wilfon, editors, Autonomous Robot Vehicles, Germany: Springer-Verlag, 1990: 167-193.
  • 2N Ayache, O Fangeras. Building, registrating, and fusing noisy visual maps [J]. Int. J. Robotics Research (S0278-3649), 1988, 7(6): 45-65.
  • 3R Chatila, J P Laumond. Position referencing and consistent world modeling for mobile robots [C]//Proc. IEEE Int. Conf. Robotics and Automation, 1985. Leuven: IEEE Press, 1985: 138-143.
  • 4G Dissanayake, P Newman, H F Durrant-Whyte, S Clark, M Csobra, A solution to the simultaneous localisation and map-maping (SLAM) problem [J]. IEEE Trans. Robotics and Automation (S1042-296X), 2001, 17(3): 229-241.
  • 5H F .Durrant-Whyte, G Dissanayake, P W Gibbens. Toward deployment of large-scale simultaneous localization and map building (SLAM) system [C]// Robotics Research, The Ninth Int. Symposium, 2001. Lorne, Australia: ISRR Press, 2001: 229-241.
  • 6Hugh Durrant-Whyte and Tim Bailey, Simultaneous Localisation and Mapping (SLAM): Part Ⅰ The Essential Algorithms [J]. IEEE Robotics and Automation Magazine (S1070-9932), 2006, 13(2): 99-110.
  • 7Tim Bailey, Hugh Durrant-Whyte. Simultaneous Localisation and Mapping (SLAM): Part Ⅱ - State of the Art [J]. IEEE Robotics and Automation Magazine (S 1070-9932), 2006, 13(3): 108-117.
  • 8T Bailey, J Nieto, J Guivant, M Stevens, E Nebot. Consistency of the EKF-SLAM algorithm [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, Orlando, Florida: IEEE Press, 2006: 3562~3568.
  • 9C Estrada, J Neira, J D Tardos. Hierarchical SLAM: Realtime accurate mapping of large environments [J]. IEEE Transactions on Robotics (S1552-3098), 2005, 21(4): 588-596.
  • 10陈东岳,张立明.SLAM问题中的模糊几何地图与顶点自定位法[J].控制理论与应用,2006,23(5):679-686. 被引量:3

二级参考文献29

  • 1[1]P.J.Besl and N.D.McKay.A method for registration of 3-d shapes[C]//IEEE Trans.on Pattern Analysis and Machine Intelligence,1992,14:239-256.
  • 2[2]F.Lu,E.Milios.Robot pose estimation in unknown environments by matching 2D range scans[J].Journal of Intelligent and Robotic Systems.1997,18:249-275.
  • 3[3]N.Fairfield and B.Maxwell.Mobile Robot localization with sparse landmarks[C]//in Proceedings of SPIE Workshop on Mobile Robots ⅩⅥ(4573-15),2001.
  • 4[4]G.Sharp,S.Lee,and D.Wehe.ICP registration using invariant features[C]//IEEE Trans.on PAMI,2002,24(1):90-102.
  • 5[5]C.Früh.Automated 3D model generation for urban environments[D].PhD Thesis,University of Karlruhe,Germany,2002.
  • 6[6]J.Selk(a)inaho,A.Halme and J.Paanaj(a)rvi.Navigation System of an outdoor service robot with hybrid locomotion system[C]//International Conference on Field and Service Robotics(FSR),Finland,2001.
  • 7[7]A.Howard,D.F.Wolf and G.S.Sukhatme.Towards 3D mapping in large urban environments[C]// In IEEE/RSJ Int.Conference on Intelligent Robot and Systems,Japan,2004.419-424.
  • 8[8]J.S.Gutmann and C.Schlegel.AMOS:Comparison of scan matching approaches for self-localization in indoor environments[C]//In Proc.of the 1st Euro micro Workshop on Advanced Mobile Robots,IEEE Computer Society Press,1996.
  • 9[10]M.A.Fischler and R.C.Bolles.Random sample consensus:a paradigm for model fitting with application to image analysis and automated cartography[J].Communication Association and Computing Machine,1981,24(6):381-395.
  • 10[11]T.Einsele.Localization in indoor environments using a panoramic laser range finder[D].dissertation,TU München,Lehrstuhi für Realzeit-Computersysteme,Februar,2002.38-40.

共引文献7

同被引文献32

引证文献2

二级引证文献14

;
使用帮助 返回顶部