期刊文献+

模糊支持向量机隶属度的确定方法 被引量:13

Determination method of membership of Fuzzy SVM
下载PDF
导出
摘要 传统的支持向量机对噪声或野点是敏感的,针对这种情况,引入了模糊支持向量机,但模糊隶属度的确定是个难点。利用基于线性规划下的一类分类算法来确定模糊隶属度,根据不同输入样本对分类的贡献不同,赋予相应的隶属度,将噪声或野点与有效样本区分开。实验结果表明,模糊支持向量机比传统的支持向量机有更好的分类效果,能够削弱噪声或野点的影响。 As the traditional Support Vector Machines(SVM) is sensitive to the noises or outliers,Fuzzy Support Vector Machines is introduced,but the determination of fuzzy membership is a difficulty.One-class classification algorithm based on linear programming is used to determine fuzzy membership in this paper,then the corresponding membership is given according to different input data affects on the classification results.So this method effectively distinguishes between the noises or outliers and the valid samples.Experimental results indicate that Fuzzy Support Vector Machines yields better classification result than the traditional SVM,thus the effects of the noise or outliers can be diminished.
作者 刘畅 孙德山
出处 《计算机工程与应用》 CSCD 北大核心 2008年第11期41-42,46,共3页 Computer Engineering and Applications
关键词 线性规划 模糊支持向量机 隶属度 linear programming Fuzzy Support Vector Machines(FSVM) membership
  • 相关文献

参考文献6

  • 1Vapnik V N.The nature of statistical learning theory[M].New York: Springer, 1995.
  • 2Burges C J C,A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998,2(2) : 121-167.
  • 3Lin C F,Wang S D.Fnzzy support vector machines[J].IEEE Transaction on Neural Networks,2002,13(2):464-471.
  • 4Lin C F,Wang S D.Fuzzy support vector machines with automatic membership setting[J].StudFuzz, 2005, 177 : 233-254.
  • 5张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 6UCI.[EB/OL].(2006).http://www.ics.uci.edu/-mlearn/MLRepository.html.

二级参考文献9

  • 1Lin C F, Wan Sh D. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002,13(2) :464 - 471.
  • 2Chiang J H, Hao P Y. A new kernel-based fuzzy clustering approach: support vector clustering With cell Growing [J]. IEEE Transactions on Fuzzy Systems, 2003,11 ( 4 ) : 518 - 527.
  • 3Lin Y, Lee Y, Wahba G. Support vector machines for classification in nonstandard situations [ J ]. Machine Learning, 2002,46 : 191 - 202.
  • 4Huang H P, Liu Y H. Fuzzy support vector machines for pattern recognition and data mining [ J ]. Internation Journal of Fuzzy Systems,2002,4(3 ) :826 - 835.
  • 5Zhang J S, Leung Y W. Robust clustering by pruning outliers [J].IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics,2003,33(6) :983 - 999.
  • 6George K,Dimitrios G, Nick K, et al. Efficient biased sampling for approximate clustering and outlier detection in large data sets [J].IEEE Transactions on Knowledge and Data Engineering. 2003,15(5) :1170-1187.
  • 7UduPa J K, Samarasekera S. Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation[J]. Graphical Model and Image Processing, 1995,58(3): 246 -261.
  • 8Cocosco C A, Kollokian V R, Kwan K S, et al. BrainWeb: online interface to a 3D MRI simulated brain database [ J]. NeuroImage,1997,5(4) :425.
  • 9张翔,田金文,肖晓玲,柳健.支持向量机及其在医学图像分类中的应用[J].信号处理,2004,20(2):208-212. 被引量:29

共引文献37

同被引文献96

引证文献13

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部