期刊文献+

基于人眼视觉特性的混合滤波算法 被引量:1

An mixed filter algorithm based on human visual system
下载PDF
导出
摘要 为了有效地滤除混合噪声,本文提出了一种基于人眼视觉特性的混合滤波算法。该方法首先采用基于人眼视觉特性的噪声敏感系数作为阈值来确定脉冲噪声点,对检测出脉冲噪声点采用自适应窗口大小的迭代中值滤波进行滤波,而对于含有高斯噪声的像素点则采用一种保护细节的改进的自适应模糊滤波器进行处理。该算法与标准滤波方法及其它改进混合滤波算法相比,具有更好的滤波性能。 In order to remove mixed noise effectively, an mixed filter algorithm based on human vision system is proposed. First it determines possible impulse noisy pixels according to the noisy threshold, the noisy sensitive coefficient which is based on human vision system, then the impulse noisy pixels are moved by the iterative median filtering algorithm, and the filter window size is adaptively adjusted. A detail - preserving fuzzy filter is adopted to reduce Gaussian noise contained in other pixels. The algorithm has better filtering performance than the standard filters and other improved mixed filters.
出处 《激光杂志》 CAS CSCD 北大核心 2008年第2期22-24,共3页 Laser Journal
基金 教育部新世纪优秀人才支持计划项目(批准号:NCET-05-0897) 新疆维吾尔自治区高校科学研究计划项目(批准号:XJEDU2004E02 XJEDU2006110)
关键词 混合噪声 模糊滤波器 人眼视觉特性(HVS) mixed noise fuzzy filter human visual system (HVS)
  • 相关文献

参考文献9

  • 1胡浩,王明照,杨杰.自适应模糊加权均值滤波器[J].系统工程与电子技术,2002,24(2):15-17. 被引量:41
  • 2Li Rui, Zhang Yu - Jin. A hybrid filter for the cancellation of mixed Gaussian noise and impulse noise [ C ]. Proceedings of the 2003 Joint Conference of the Fourth Intemational Conference on Information, Communications and Signal Processing, and the Fourth Pacific Rim Conference on Multimedia (ICICS- PCM2003), Singapore, 2003, 1:508 - 512.
  • 3关新平,赵立兴,唐英干.图像去噪混合滤波方法[J].中国图象图形学报(A辑),2005,10(3):332-337. 被引量:110
  • 4Roman Garnett, Timothy Huegerich, Charles Chui, Wenjie He. A universal noise removal algorithm with an impulse detector[J]. IEEE transactions image processing, 2005,14( 11 ):1747- 1754.
  • 5王建勇,周晓光,廖启征.一种基于中值-模糊技术的混合噪声滤波器[J].电子与信息学报,2006,28(5):901-904. 被引量:22
  • 6潘梅森,易明.一种基于人类视觉的自适应均值滤波算法[J].计算机工程与应用,2006,42(10):62-64. 被引量:8
  • 7G. Pok, J. Liu, and A. S. Nair. Selective removal of impulse noise based on homogeneity level information [ J ]. IEEE Trans. Image Process., 2003,12(1): 85-92.
  • 8张旭明,徐滨士,董世运,甘小明.自适应中值-加权均值混合滤波器[J].光学技术,2004,30(6):652-655. 被引量:26
  • 9M. E. Yuksel, A. Basturk. A simple generalized neuro-fuzzy operator for efficient removal of impulse noise from highly corrupted digital images.Int.J.Electron.Commun ,2005, 59(1):1-7.

二级参考文献27

  • 1祝宇鸿.一种改进的数字图像中值滤波算法[J].吉林大学学报(信息科学版),2001,19(2):23-27. 被引量:19
  • 2章毓晋.图像工程(上册):图像处理和分析[M].北京:清华大学出版社,1999.154-155.
  • 3Pitas I, Venetsanopoulos A N. Nonlinear digital filters: Principles and applications[M]. Kluwer Academic Publishers, January 1990.(ISBN-0-7923-9049-0 ), also reprinted in Taiwan of China, 1993:416.
  • 4Lee Y H. Generalized median filtering and related nonlinear filtering technique[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (3) :672 ~ 683.
  • 5Kaoru Arakawa. Median filter based on fuzzy rules and its application to image restoration[J]. Fuzzy Sets and Systems, 1996,77:3 ~ 13.
  • 6Choi Y, Krishnapuram R. A robust approach to image enhancement based in fuzzy logic. IEEE Trans on image Processing, 1997, 6(6): 808 - 825.
  • 7Taguchi A. Removal of mixed noise by using fuzzy rules. Second International Conf. On Knowledge-Based Intelligent Electronic Systems.Australia, 1998.. 176- 179.
  • 8Muneyasu M, Asou K, Wada Y J, et al,. An edge-preserving fuzzy filter based on differences between pixels. IEEE Proc. on Circuits and Systems, Orlando, FL, 1999, 5:363 - 366,
  • 9Naehtegael M, Van der Weken D, Van De Ville D, et al.. An overview of fuzzy filters for noise reduction. The 10th IEEE Conf,on Fuzzy Systems, Melbourne, 2001, 1:7 - 10.
  • 10Li Rui, Zhang Yu-Jin. A hybrid filter for the cancellation of mixed Gaussian noise and impulse noise. Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing, and the Fourth Pacific Rim Conference on Multimedia (ICICS-PCM2003), Singapore, 2003,1 : 508 - 512.

共引文献180

同被引文献10

  • 1李永刚,石美红,魏远旺.基于PCNN的高斯噪声滤波[J].计算机工程与应用,2007,43(1):65-67. 被引量:18
  • 2李征,苏理云,马洪,琚生根,杨舰.基于神经网络和维纳滤波的半盲离焦图像复原[J].激光杂志,2007,28(2):39-40. 被引量:4
  • 3Chan, R. H., Chung - Wa Ho, Nikolova, M. Salt - and - pepper noise removal by median type noise detectors and detail - preserving regularization[ J]. IEEE Trans. Image Process. ,2005,14(10) : 1479 - 1485.
  • 4J. Hou, J. Tian, J. Liu. An improved wienerchop algorithm for image denoising[ A]. in Proc. IEEE Int. Conf. Commun. Circuits Syst. [C], 2005, 2: 838- 841.
  • 5Su Te- Jen, Wang Hsin- Chih, Liu Jia- Wei. Particle Swarm Optimization for Image Noise Cancellation [ C]. Intelligent Information Hiding and Multimedia Signal Processing, 2007. IIHMSP, 2007. Third International Conference on,2007,1:95 - 98.
  • 6Kadir Liano. Robust Error Measure for Supervised Neural Network Learning with Outliers[J]. IEEE Trans. Neural Netw., 1996, 7( 1 ) : 246 - 250.
  • 7J. Kennedy, R. C. Eberhart. Particle Swarm Optimization [ A ]. in Proc. IEEE Int. Conf. Neural Netw.[C],1995, 1942-1948.
  • 8Shi Y, Eberhart R C. A modified particle swarm optimizer[A] .IEEE Wodd Congr. Computational Intell. Anchorage[ C], 1998, 69 - 73.
  • 9Song Shao - zhong, Zhang Li - biao, Shu - hua. The application of particle swarm optimization algorithm in training Forward Neural Network[ A]. 8th Int. Conf. Sofiw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput[C], 2007,2:455 - 457.
  • 10夏国清,边信黔.基于鲁棒误差函数的 BP 算法[J].哈尔滨工程大学学报,1998,19(3):33-37. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部