期刊文献+

隐式Runge-Kutta方法求解多延迟微分方程的GPL_m-稳定性(英文)

GPL_m-stability of the implicit Runge-Kutta method for delay differential equations with many delays
下载PDF
导出
摘要 研究了用IRK方法求解多延时微分方程数值解的稳定性,对于线性模型方程,分析并证明了IRK方法是GPLm-稳定的当且仅当它是L稳定的. This paper deals with the stability of the IRK method for the numerical solution of a delay differential equation with many delays. The GPLm-stability of the IRK method is analyzed for the solutions of linear test equations. It is shown that the IRK method is GPLm-stable if and only if it is L-stable.
出处 《上海师范大学学报(自然科学版)》 2008年第2期111-116,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 The National Natural Science Foundation (10741003) Shanghai Municipal Education Commission(07ZZ64)
关键词 延时微分方程 GPLm-稳定性 隐式Rungc-Kutta方法 delay differential equation CPLm-stability implicit Runge-Kutta method
  • 相关文献

参考文献8

  • 1LAMBERT J D. Computational Methods in Ordinary Differential Equation[ M ]. NewYork :John Wiley, 1990.
  • 2IN'T HOUT K J. A new interpolation procedure for adapting Runge-Kutta method for Delay Differential Equations[ J]. BIT, 1992,32:634 - 649.
  • 3ZENNARO M. On the P-stability of Runge-Kutta Methods For Differential Equation [ J ]. Numer Math, 1986,49:305 - 318.
  • 4KUANG J X, CONG Y H. The stability of numerical methods for delay differential equations [ M]. Beijing:Seience Press, 2005.
  • 5YANG B, KUANG J X. The PaL-stability of The IRK method For Delay Differential Equations [ J]. Journal of Shanghai Normal Univ,1999,28(1) :9 - 15.
  • 6KUANG J X. The PL-stability of the block θ method of Delay Differential Equations [ J]. Chinese J CM, 1997,2:35 -40.
  • 7TAN X L,LI S D. The PLm -stability of the Block-θ method[J]. Journal of Shanghai Normal Univ,2007,36(3) :6 - 11.
  • 8丛玉豪,李顺道,谭秀丽.求解延迟微分方程块θ-方法的GPL_m-稳定性(英文)[J].系统仿真学报,2007,19(17):3937-3939. 被引量:1

二级参考文献9

  • 1Kuang Jiaoxun, Cong Yuhao. Stability of Numerical Methods for Delay Differential Equations [M]. Beijing: Science Press, 2005.
  • 2V K Barwell. Special stability problems for functional differential equations [J]. BIT (S0006-3835), 1975, 15(2): 130-135.
  • 3M Z Liu, Spijker M N. The stability of θ-methods in the numerical solution [J]. IMA Numer. An. (S0272-4979), 1990, 10(1): 31-48.
  • 4In't Hout K J. A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations [J]. BIT (S0006-3835) , 1992, 32(4): 634-649.
  • 5G D Hu, Mitisui T. Stability of numerical methods for systems of nautral delay differential equations [J]. BIT (S0006-3835) , 1995, 35(4): 504-515.
  • 6T Koto. A stability property of A-stable natural Runge-Kutta methods for systems of delay differential equations [J]. BIT (S0006-3835) 1994, 34(2): 262-267.
  • 7C M Huang, S F Li, H Y Fu, et al, Stability and error analysis of one-leg methods for nonlinear delay differential equations [J]. J. Comput. Appl. Math. (S0377-0427) , 1999, 103: 263-279.
  • 8C J Zhang, S Z Zhou. Stability analysis of LMMs for systems of neutral multidelay-differential equations [J]. J. Computers and Mathematics with Application (S0898-1221) , 1999, 38(1): 113-117.
  • 9B Yang, L Qiu, T Mitsui. GPG-stability of Runge-Kutta methods for generalized delay differential systems [J]. J. Computers and Mathematics with Application (S0898-1221) , 1999, 37(1): 89-97.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部