摘要
针对局部保留投影(LPP)的非监督本质,提出一种称为有监督的局部保留算法(SLPP)的线性降维方法,它同时考虑类间分离性以及 LPP 中的局部保留特性.实验结果表明 SLPP 算法较其他算法优越.线性的 SLPP 算法还可通过使用核方法扩展到非线性的情况.
Aiming at the unsupervised property of locality preserving projection (LPP), a linear dimensionality reduction method called supervised locality preserving projections (SLPP) is proposed, which integrates the locality preserving property in LPP and the class separability. Experimental results show SLPP is superior to some classical and recently presented methods. The linear SLPP method can also be extended to non-linear dimensionality reduction scenarios by using the kernel method.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2008年第2期233-239,共7页
Pattern Recognition and Artificial Intelligence
基金
教育部跨世纪优秀人才培养计划项目(No.NCET-04-0496)
江苏省自然科学基金项目(No.BK2003017)资助
关键词
降维
局部保留投影(LPP)
有监督的局部保留投影(SLPP)
核方法
Dimensionality Reduction, Locality Preserving Projection (LPP), Supervised Locality Preserving Projection (SLPP), Kernel Method