期刊文献+

有监督的局部保留投影降维算法 被引量:30

A Supervised Locality Preserving Projection Algorithm for Dimensionality Reduction
原文传递
导出
摘要 针对局部保留投影(LPP)的非监督本质,提出一种称为有监督的局部保留算法(SLPP)的线性降维方法,它同时考虑类间分离性以及 LPP 中的局部保留特性.实验结果表明 SLPP 算法较其他算法优越.线性的 SLPP 算法还可通过使用核方法扩展到非线性的情况. Aiming at the unsupervised property of locality preserving projection (LPP), a linear dimensionality reduction method called supervised locality preserving projections (SLPP) is proposed, which integrates the locality preserving property in LPP and the class separability. Experimental results show SLPP is superior to some classical and recently presented methods. The linear SLPP method can also be extended to non-linear dimensionality reduction scenarios by using the kernel method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第2期233-239,共7页 Pattern Recognition and Artificial Intelligence
基金 教育部跨世纪优秀人才培养计划项目(No.NCET-04-0496) 江苏省自然科学基金项目(No.BK2003017)资助
关键词 降维 局部保留投影(LPP) 有监督的局部保留投影(SLPP) 核方法 Dimensionality Reduction, Locality Preserving Projection (LPP), Supervised Locality Preserving Projection (SLPP), Kernel Method
  • 相关文献

参考文献15

  • 1Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
  • 2Roweis S T, Saul I. K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290 (5500) : 2323- 2326
  • 3He Xiaofen, Niyogi P. Locality Preserving Projections//Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, 16: 153-160
  • 4Jolloffe I T. Principal Component Analysis. New York, USA: Springer-Verlag, 1986
  • 5Fisher R A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, 7(2): 179-188
  • 6Fukunaga K. Introduction to Statistical Pattern Recognition. 2nd Edition. Boston, USA: Academic Press, 1990
  • 7Sugiyama M. Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction//Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006:905-912
  • 8Belkin M, Niyogi P. I,aplacian Eigenmaps and Spectral Techniques for Embedding and Clustering // Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001, 14: 585-591
  • 9Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998
  • 10Scholkopf B, Smola A J, Muller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319

同被引文献255

引证文献30

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部