期刊文献+

基于用户的协作过滤信息推荐模型研究 被引量:4

Study on recommendation model of collaborative filtering based on user
下载PDF
导出
摘要 当网络成为人们获取信息的主要途径时,"信息过量"与"信息饥饿"的矛盾却日益凸现,因此,提供个性化服务显得尤为必要。提出了一种基于用户的协作过滤信息推荐模型,实验结果表明,该模型能够有效地改善传统协作过滤推荐技术所面临的扩展性和数据高维稀疏性问题,同时信息推荐质量较传统推荐算法还有明显提高。 Nowadays, web has become the main ways to gain information. However, "information overload" and "information lack" has become a big problem to be studied. To provide the personalized service for the people appears especially essential. A recommendation model of collaborative filtering based on user is proposed. The results of experiment show that the model improve the two problems that traditional collaborative filtering faced efficiently. Simultaneously the quality of information recommendation also has the distinct enhancement compares to the traditional recommendation.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第8期2047-2051,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60373111) 新世纪优秀人才支持计划基金项目(NCET) 重庆市自然科学基金重点项目(2005BA2003) 重庆邮电大学自然科学基金项目(A2007-29)
关键词 协作过滤 信息推荐 模型 稀疏 扩展 collaborative filtering information recommend model sparsity extension
  • 相关文献

参考文献11

二级参考文献118

  • 1陈晋川,张晓刚,王青,李明树.基于CoP建模的协作过滤推荐方法[J].计算机工程与设计,2004,25(12):2151-2153. 被引量:3
  • 2刘学慧,吴恩华.虚拟现实的图形生成技术[J].中国图象图形学报(A辑),1997,2(4):205-212. 被引量:47
  • 3Mark Lawton. Advancing 3 D through VRML on the Web[J].IEEE Transactions on Computer Graphics and Applications,1999,19(2):4-5.
  • 4Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 5Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 6Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 7Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 8Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 9Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 10Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.

共引文献1099

同被引文献25

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部