期刊文献+

基于自回归过程的惯性敏感器随机误差建模 被引量:1

Random error modeling of inertial sensors based on autoregressive process
下载PDF
导出
摘要 针对传统高斯马尔柯夫过程在惯性敏感器随机误差建模过程中存在的由自相关序列计算不准确引起建模不准确的缺点,引入自回归过程建模方法对惯性敏感器的随机误差进行建模。建立了自回归过程模型,分析了三种确定自回归过程模型参数的方法,对三种参数估计方法进行了比较,分析结果表明burg法得到的自回归模型稳定性更好。利用静态数据对随机误差的自回归过程模型进行了测试,并将测试结果与其它随机过程模型得到的结果进行了比较。结果表明采用burg法确定模型参数的自回归过程模型的收敛性好,3阶自回归过程模型就能得到最佳的估计效果。同其它随机过程模型相比,自回归过程模型的收敛速度快,稳定性好。 The conventional Gauss-Markov process has the shortcoming of low precision in modeling the inertial sensors random errors, and this is caused by the inaccurate calculation of autocorrelation sequence. The modeling technique using autoregressive process was introduced to model the inertial sensors stochastic error. Three methods to decide the autoregressive process parameters were analyzed, and the burg method was proved to be the best one by comparing them. The model was tested and compared with other stochastic processes by static data. The result show that the model parameterized with burg method has good convergence, and 3-order model has the optimal estimation effect. AR model has high convergence velocity and stability compared with other stochastic processes.
出处 《中国惯性技术学报》 EI CSCD 2008年第2期224-227,共4页 Journal of Chinese Inertial Technology
基金 军队重点科研项目基金(KJ06703) 空军工程大学工程学院优秀博士学位论文创新基金资助(BC06003)
关键词 自回归过程 惯性敏感器 随机误差 建模 autoregressive process inertial sensor random error modeling
  • 引文网络
  • 相关文献

参考文献9

  • 1Box G E P,Jenkins G M.Time series analysis,forecasting and control[M].San Francisco Holden-Day Inc,1970(Revised 1976).
  • 2赵世峰,张海,沈小蓉,范耀祖.MEMS陀螺随机噪声的多尺度时间序列建模[J].中国惯性技术学报,2006,14(5):78-80. 被引量:5
  • 3蔡艳宁,胡昌华.基于支持向量回归机的陀螺漂移预测模型[J].中国惯性技术学报,2007,15(5):593-597. 被引量:10
  • 4夏敦柱,周百令,王寿荣.实时小波滤波方法在硅微陀螺仪中的应用研究[J].中国惯性技术学报,2007,15(1):92-95. 被引量:9
  • 5Pimbley J.M.Recursive Autogressive spectral estimation by minimization of the free energy[J].IEEE Transactions on Signal Processing,2002,40 (6):1518-1527.
  • 6Walker G.On periodicity in series of related terms[C]//Proceedings of the Royal Society of London.1931.Vol.131:518-532.
  • 7Burg J P.Maximum entropy spectral analysis[D].Stanford,USA:Department of Geophysics,Stanford University,1975.
  • 8Daoudi K,Frakt A B,Willsky A S.Multiscale autoregressive models and wavelets[J].IEEE Transactions on Information Theory,1999,45 (3):828-845.
  • 9Nassar S,Schwarz K P,EI-Sheimy N.Modeling inertial sensors errors using autoregressive models[C]//Proceedings of the Institute of Navigation National Technical Meeting.Anaheim,USA,2003:116-125.

二级参考文献19

共引文献21

同被引文献13

引证文献1

二级引证文献10

;
使用帮助 返回顶部