期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
洛埃镜掠射角分析
下载PDF
职称材料
导出
摘要
从人眼的分辨率和干涉定域两个不同的角度对洛埃镜掠射角的大小做了半定量的讨论。
作者
于桂英
李履平
出处
《辽宁教育学院学报》
1997年第5期25-27,共3页
Journal of Liaoning Educational Institute
关键词
洛埃镜
干涉定域
光程差
掠射角
干涉
分类号
O436.1 [机械工程—光学工程]
引文网络
相关文献
节点文献
二级参考文献
6
参考文献
1
共引文献
6
同被引文献
0
引证文献
0
二级引证文献
0
参考文献
1
1
陈熙谋.
电力平方反比律的实验验证[J]
.大学物理,1982,0(1):11-15.
被引量:7
二级参考文献
6
1
S.E.Whittaker,A History of the Theories of Aether and Electricity, 1951.
2
J. C. Maxwell, A Treatise on Electricity and Magnetism, 1892, P 80-85.
3
S.J.Plimpton and W.E.Lawton, Phys. Rev. 50,1066, (1936).
4
G.D.Cochran and P A.Franken, Bull.Am. Phps. Soc. J3, 1379, (1968).
5
D.F.Bartlett, P.E.Goldhagen and E A.Phillips,Phys. Rev. D2,483,(1970).
6
E.R Williaras, J.E.Faller and H A.Hill,Phys. Rev. Letters,26,721,(1971).
共引文献
6
1
金以娟,王敬益.
电力平方反比定律偏离平方反比对高斯定理的影响[J]
.物理与工程,1992,6(4):12-17.
2
王京云.
关于库仑平方反比定律的证明[J]
.太原重型机械学院学报,1989,10(2):53-56.
3
孙绍信.
坡印亭定理在稳恒电路中的应用[J]
.阜阳师范学院学报(自然科学版),1995(3):34-37.
4
魏标.
麦克斯韦精确验证电力平方反比律的实验和理论[J]
.物理通报,2013,42(2):111-114.
5
陈冠英.
薄膜干涉条纹定域的确定[J]
.大学物理,1991,10(11):28-30.
被引量:4
6
郭铁梁,姜洪喜,张文祥.
大学物理静电平衡教学的理论挖掘与工程实践[J]
.高师理科学刊,2022,42(8):105-110.
被引量:1
1
徐力.
洛埃镜的干涉[J]
.沈阳师范大学学报(自然科学版),1995,17(4):26-27.
2
程芝生,郭书清.
洛埃镜测杨氏模量[J]
.大学物理实验,1994,7(1):4-7.
被引量:2
3
姬玉,浦寒千,陈骏逸,陆申龙.
声学:声速测量及声波的波动学规律研究[J]
.中国学术期刊文摘,2007,13(19):3-3.
4
姬玉,浦寒千,陈骏逸,陆申龙.
声速测量及声波的波动学规律研究[J]
.大学物理,2007,26(1):58-61.
被引量:7
5
潘维济,李婉茹.
洛埃镜干涉条纹的可见度[J]
.大学物理,1984,0(4):21-22.
被引量:1
6
张靖武.
薄膜干涉定域的定量分析[J]
.大学物理,1985,0(8):7-10.
被引量:7
7
孟进,杨铭珍.
迈克耳逊-莫雷实验的一个直观演示[J]
.辽宁师范大学学报(自然科学版),1991,14(2):158-161.
8
李广庭,张自嘉.
薄膜干涉定域的一种解法[J]
.光电子.激光,1993,4(3):145-146.
9
李萍.
自制洛埃镜实验装置及测量结果[J]
.云南民族学院学报(自然科学版),1999,8(4):52-53.
被引量:1
10
郑仲森.
“半波损失”浅析[J]
.湛江水产学院学报,1996,16(1):81-82.
<
1
2
>
辽宁教育学院学报
1997年 第5期
职称评审材料打包下载
相关作者
陆巍峰
杨曦
周宇晨
胡小军
潘晓斌
陈楠希
胡虎肇
张晓霞
李青
相关机构
中国人民银行
中国人民银行杭州中心支行
中国人民银行济南分行
中国人民银行石家庄中心支行
中国人民银行西宁中心支行
相关主题
金融运行报告
产业增加值
中央经济工作会议精神
经济运行
同比增长
微信扫一扫:分享
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
;
用户登录
登录
IP登录
使用帮助
返回顶部