期刊文献+

电网PMU优化配置中IGASA算法的研究 被引量:3

Study of IGASA Algorithm in PMU's Optimized Scheme of Power System Network
下载PDF
导出
摘要 在函数的全局优化算法中,模拟退火算法和遗传算法的结合可较好地改善算法的性能.基于这个思想将适合全局搜索的遗传算法(GA)和适合局部搜索的模拟退火算法(SA)相结合,提出改进的遗传模拟退火混合算法(IGASA)来解决电力系统PMU优化配置问题.该算法用于遗传算法中选择概率的计算以增强算法的收敛性,在交叉和变异概率的选取上也进行了改进,以进一步改善算法的稳定性和收敛性,并提高了收敛速度和防止种群早熟现象.5个仿真试验验证了该算法的可行性和有效性. Among the global optimization algorithms of functions, hybrid SAGA can improve the performance of algorithms. Since the SA is suitable for global searching and the GA is suitable for local searching, we propose an ISAGA to solve the PMU placement of the power system. The selective probability, cross probability and mutation probability of the proposed algorithm are improved to enhance algorithm stability and convergence as well as its search efficiency and its capability to converge to good global optimum. Five simulation tests show that the IGASA is feasible and effective.
出处 《甘肃科学学报》 2008年第2期112-115,共4页 Journal of Gansu Sciences
关键词 电网 混合算法 PMU优化 可观性 power network,hybrid algorithm,PMU optimization,observability
  • 相关文献

参考文献12

  • 1Phadke A G. Synchronized Phasor Measurements in Power Systems[J]. IEEE Computer Applications in Power. 1993,6 (2) :10-15.
  • 2Mao A J,Yu J X,Guo Z Z. PMU Placement and Data Processing in WAMS that Complements SCADA[J]. IEEE Power Engineering Society General Meeting. 2005,1(12-16) :780- 783.
  • 3Krumpholz GR, Clements GR, Davis PW. Power System Observability: a Practical Algorithm Using Network Topology [J]. IEEE Trans on Power Apparatus and Systems. 1980, PAS-99(3): 1 534-1 542.
  • 4Clements KA, Krumpholz GR, Davis PW. Power System State Estimation Residual Analysis: an Algorithm Using Network Topology [J]. IEEE Trans on Power Apparatus and Systems. 1981 ,PAS-100 (4): 1779-1787.
  • 5T. L. Baldwin,L. Mili, M. B. Boisen, R. Adapa. Power System Observability with Minimal Phasor Measurement Placement [J]. IEEE Transactions on Power Systems. 1993, 8(2). 707- 715.
  • 6田东平,迟洪钦.混合遗传算法与模拟退火法[J].计算机工程与应用,2006,42(22):63-65. 被引量:20
  • 7黄宜军,章卫国,刘小雄.一种新的自适应退火遗传算法[J].西北工业大学学报,2006,24(5):571-575. 被引量:5
  • 8王凌.智能优化算法及应用[M].北京:清华大学出版社,2001.17-35.
  • 9王晓兰,王玮冬,张万宏.一种求解H_2/H_∞控制问题的局部正交多目标遗传算法[J].甘肃科学学报,2007,19(4):81-84. 被引量:2
  • 10蔡田田,艾芊.电力系统中PMU最优配置的研究[J].电网技术,2006,30(13):32-37. 被引量:37

二级参考文献66

共引文献177

同被引文献59

  • 1郭佩英,郝红艳,邓颖,刘宁,张智.考虑测量冗余度最大的电力系统PMU最优配置[J].东北电力大学学报,2010,30(2):31-35. 被引量:6
  • 2邝航宇,金晶,苏勇.自适应遗传算法交叉变异算子的改进[J].计算机工程与应用,2006,42(12):93-96. 被引量:96
  • 3蔡田田,艾芊.电力系统中PMU最优配置的研究[J].电网技术,2006,30(13):32-37. 被引量:37
  • 4Phadke G,Thorp J S,Karimi K J.State estimation with phasor measurements[J].IEEE Transactions on Power System,1986,1(1):233-241.
  • 5Phadke A G,Thorp J S.Synchronized phasor measurements and their applications[M].New York:Springer,2008:8-20.
  • 6Xu B,Abur A.Observability analysis and measurement placement for systems with PMUs[C]//Proceedings of IEEE Conference on Power Energy System.New York:IEEE,2004:943-946.
  • 7Chen J,Abur A.Improved bad data processing via strategic placement of PMUs[C]//Proceedings of IEEE General Meeting on Power Engineering Society.San Francisco:IEEE,2005:509-513.
  • 8Chen J,Abur A.Placement of PMUs to enable bad data detection in state estimation[J].IEEE Transactions on Power System,2006,21(4):1608-1615.
  • 9F.Aminifar,A.Khodaei,M.Fotuhi-Firuzabad,et al.Contingency-constrained PMU placement in power networks[J].IEEE Transactions on Power System,2010,25(1):516-523.
  • 10Emami R,Abur A.Robust measurement design by placing synchronized phasor measurements on network branches[J].IEEE Transactions on Power System,2010,25(1):38-43.

引证文献3

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部