期刊文献+

稀疏最小二乘支持向量机及其应用研究 被引量:9

Sparse Least Squares Support Vector Machine and Its Applications
下载PDF
导出
摘要 提出一种构造稀疏化最小二乘支持向量机的方法.该方法首先通过斯密特正交化法对核矩阵进行简约,得到核矩阵的基向量组;再利用核偏最小二乘方法对最小二乘支持向量机进行回归计算,从而使最小二乘向量机具有一定稀疏性.基于稀疏最小二乘向量机建立了非线性动态预测模型,对铜转炉造渣期吹炼时间进行滚动预测.仿真结果表明,基于核偏最小二乘辨识的稀疏最小二乘支持向量机具有计算效率高、预测精度好的特点. A method is proposed to construct sparse least squares support vector machines (LSSVMs). Firstly, the kernel matrix is reduced by Schmidt orthogonalization to get base vectors of the kernel matrix. Then, regression of the LSSVM is computed with kernel partial least squares so that the LSSVM is sparse. A nonlinear dynamic prediction model based on sparse LSSVM is constructed to predict the converting time of copper converter at the slag making stage. The simulation results show that the sparse LSSVM based on kernel partial least squares identification is of high computation efficiency and good prediction accuracy.
出处 《信息与控制》 CSCD 北大核心 2008年第3期334-338,345,共6页 Information and Control
基金 国家自然科学基金(60634020 60574030) 国家973计划资助项目(2002cb312200) 博士点基金(20050533016)
关键词 最小二乘支持向量机 核偏最小二乘辨识 智能建模 least squares support vector machine (LSSVM) kernel partial least squares identification intelligent modeling
  • 相关文献

参考文献18

  • 1Vapnik V N. The Nature of Statistical Learning Theory [M]. New York, USA: Springer, 1995.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 3Sanchez A, David V. Advanced support vector machines and kernel methods [J]. Neurocomputing, 2003, 55(1-2): 5-20.
  • 4Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300
  • 5冯瑞,张浩然,邵惠鹤.基于SVM的软测量建模[J].信息与控制,2002,31(6):567-571. 被引量:43
  • 6Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squares support vector machines [A]. Proceedings of the 2001 IEEE International Symposium on Circuits and Systems [C]. Piscataway, NJ, USA: IEEE, 2000. 757-760.
  • 7Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vector machines: Robustness and sparse approximarion [J]. Neurocompuring, 2002, 48( 1-4): 85 - 105.
  • 8Baudat G, Anouar F. Kernel-based methods and function approx imation [A]. Proceedings of the IEEE International Joint Confer ence on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 2001 1244-1249.
  • 9Cawley G C, Talbot N L C. Improved sparse least-squares support vector machines [J]. Neurocomputing, 2002, 48(1-4): 1025-1031.
  • 10Valyon J, Horvath G. A sparse least squares support vector machine classifier [A]. Proceedings of the IEEE International Joint Conference on Neural Networks [C]. Piscataway, NJ USA: IEEE, 2004. 543-548.

二级参考文献21

  • 1王旭东,邵惠鹤.神经元网络建模与软测量技术[J].化工自动化及仪表,1996,23(2):28-31. 被引量:30
  • 2NAGAMORI M, MACKEY P J. Thermodynamics of copper matte converting-part Ⅰ: Fundamentals of the Noranda process [ J]. Metallurgy Transactions, 1978,9B(2) :255 - 271.
  • 3GOTO S. Equilibrium calculations between matte, slag and gaseous phases in copper smelting [P]// Copper metallurgy-practice and theory. London: Institute of Mining and Metallurgy, 1974: 23 - 29.
  • 4KYLLO A K, RICHARDS G G, MARCUSON S W. A mathematical model of the nickel converter-part Ⅱ:application and analysis of converter operation [ J]. Metallurgy Transactions, 1991,23B(4): 573 -590.
  • 5CHERIAN R P. A neural network approach for selection of powder metallurgy materials and process parameters [ J ]. Artificial Intelligence in Engineering ,2000, 14( 1 ) :39 -44.
  • 6WU Min, TANG Zhaohui, GUI Weihua. Expert control strategy using neural networks for electrolytic zinc process [ J ] . Trans of Nonferrous Metals Society of China,2000,10(4) :555 - 560.
  • 7任鸿九 胡军 胡志坤.有色金属熔池熔炼[M].北京:冶金工业出版社,2002..
  • 8胡志坤 桂卫华 彭小奇.铜转炉优化操作智能决策支持系统开发与应用.计算机科学,2002,29(10):79-81.
  • 9SUYKENS J A K.Least squares support vector machine classifiers[J].Neural Process Letter,1999,9(3):293-299.
  • 10SUYKENS J A K.Sparse approximation using least squares support vector machines[C]∥ Proceeding of the IEEE International Symposium on Circuits and Systems.Geneva:IEEE,2000,2:757-760.

共引文献2347

同被引文献101

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部