期刊文献+

改进的粒子群优化算法 被引量:13

Modified particle swarm optimization algorithm
下载PDF
导出
摘要 针对基本粒子群优化算法(PSO)易陷入局部极值点,进化后期收敛慢,精度较差等缺点,提出了一种改进的粒子群优化算法。该算法用一种无约束条件的随机变异操作代替速度公式中的惯性部分,并且使邻居最优粒子有条件地对粒子行为产生影响,提高了粒子间的多样性差异,从而改善了算法能力。通过与其它算法的对比实验表明,该算法能够有效地进行全局和局部搜索,在收敛速度和收敛精度上都有显著提高。 A modified particle swarm optimization algorithm (MPSO) is proposed for improving the disadvantages of basic PSO, as tending to trap into a local optimum, converging slowly in last period of evolution, possibly bringing a consequence in low precision and so on. A random and unconditional mutation strategy which substitutes for previous velocity is presented, and the effect which the best position of neighbor particle has conditionally on the particle behavior is considered. It efficiently increases diversity of particles and improves the performance of algorithm. Comparing with other optimization algorithms in the contrast experiment, the new algorithm can greatly accelerate convergence speed and improve convergence precision by exploring the local and global minima efficiently.
作者 梁军 程灿
出处 《计算机工程与设计》 CSCD 北大核心 2008年第11期2893-2896,共4页 Computer Engineering and Design
关键词 粒子群优化 变异 进化计算 函数优化 群智能 particle swarm optimization mutation evolutionary computation function optimization swarm intelligence
  • 相关文献

参考文献9

  • 1杨燕,靳蕃,Kamel M.微粒群优化算法研究现状及其进展[J].计算机工程,2004,30(21):3-4. 被引量:23
  • 2Suganthan P N.Particle swarm optimizer with neighbourhood operator[C].Proceedings of the Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1999:1958-1962.
  • 3Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimization with breeding and subpopulations[C].San Francisco,USA:Proc of the Third Genetic and Evolutionary Computation Conference,2001.
  • 4Van den Bergh F,Engelbrecht A P.Training product unit networks using cooperative particle swarm optimizers[C].San Francisco.USA:Proc of the Third Genetic and Evolutionary Computation Conference,2001.
  • 5Van den Bergh F,Engelbrecht A P.Effects of swarm size cooperative particle swarm optimizers[C].San Francisco,USA:Proc of the Third Genetic and Evolutionary Computation Conference,2001.
  • 6Xie X F,Zhang W J,Yang Z L.A dissipative particle swarm optimization[C].Proc of the IEEE Int'l Confon Evolutionary Compumtion.Honolulu:IEEE Inc,2002:1456-1461.
  • 7Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[C].IEEE Trans on Evolutionary Computation,2004,8(3):240-255.
  • 8胡建秀,曾建潮.具有随机惯性权重的PSO算法[J].计算机仿真,2006,23(8):164-167. 被引量:37
  • 9曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160

二级参考文献25

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 3E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 4M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 5F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 6F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 7王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 8J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975
  • 9[1]Kennedy j, Eberhart R C, Shi Y. Swarm Intelligence. San Francisco:Morgan Kaufnann Publishers, 2001
  • 10[2]Kennedy J, Eberhart R C. Particle Swarm Optimization. Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995:1942-1948

共引文献215

同被引文献72

引证文献13

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部