摘要
对于不同产地和不同栽培条件的药材,其药效的不同是由于其所含化学成分和各成分含量的比例不同所造成的,这种差异将造成红外图谱的差异。但这些差异非常细微,单纯地从谱图去区分其特征是非常困难的。文章利用傅里叶变换红外光谱,测定了42种来自吉林3个不同产地的淫羊藿样品的红外光谱,并对光谱数据进行了相应的预处理。为了提高神经网络的训练速度,在利用人工神经网络建立模型之前,通过小波变换的方法对光谱变量进行了压缩。同时对建立的模型的相关参数进行了详细的讨论。实验表明,建立的模型能够正确地对42个淫羊藿样品进行产地鉴别,同时避免了传统光谱分析对药材的分离和提取,从而为中药质量的科学控制和现代化管理提供了可靠的依据。
Regarding raw drugs of the different habitat and the different cultivation condition, its treatment efficacy is different. This is because they contain different chemical composition and different ingredients content proportion, which causes the difference in their infrared spectra. But these differences are extremely slight, and purely differentiating their characteristics from the infrared spectra is extremely difficult. In the present paper, the samples of epimedium brevicornu from different fields of Jilin province were surveyed by Fourier transform infrared (IR) spectra, and the corresponding pretreatment to the spectra data was carried out. Before establishing model through the artificial neural networks, in order to enhance the training speed of the ANN, the spectra variables were compressed through the wavelet transformation, and the parameters of the ANN model were also discussed in detail. The model can distinguish the producing area of the 42 samples of epimedium brevicornum correctly, avoiding the separation and drawing of raw drugs with traditional spectroscopy analysis at the same time, thus offer an effectively and reli- able basis for the quality controls and modernized management of Chinese medicine.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2008年第6期1251-1254,共4页
Spectroscopy and Spectral Analysis
基金
国家自然科学基金项目(20473029,20573041,50635030
吉林省科技厅重点项目
教育部回国人员启动基金项目资助
关键词
中草药
淫羊藿
红外光谱
人工神经网络
小波变换
Chinese medicine
Epimedium brevicornum
Infrared spectroscopy
Artificial neural networks
Wavelet transform