期刊文献+

一类半线性椭圆方程解的存在性 被引量:2

THE EXISTENCE OF SOLUTION FOR SEMILINEAR ELLIPTIC EQUATIONS
下载PDF
导出
摘要 本文研究了一类具有临界增长的半线性椭圆型方程.采用最近A.Ambrosetti所提出的扰动方法研究这类问题,得到这类问题的解的存在性.与通常所用的临界点理论方法相比较,本文解的存在性在较弱条件下可得. This paper studies a kind of semilinear elliptic equations. We obtain the solution of these equations via Perturbation method proposed by A. Ambrosetti recently. Compared with the classical critical theory,the existence of solution holds under a weaker condition.
作者 程铭东 徐彬
出处 《数学杂志》 CSCD 北大核心 2008年第4期443-448,共6页 Journal of Mathematics
基金 国家自然科学基金资助项目(10471052)
关键词 半线性椭圆方程 扰动方法 存在性 semilinear elliptic equation perturbation method existence
  • 相关文献

参考文献9

  • 1Ambrosetti A. , Rabinowitz P.. Dual variational methods in critical point theory and applications[J]. Funct. Anal, 1973,14:349-381.
  • 2Brezis H. , Nirenberg L.. Positive solutions of nonlinear elliptic equations involving critical exponents[J].Comm. Pure. Appl. Math. , 1983,36:437-477.
  • 3Lions. P. L. The concentration-compactness principle in the caluculas of variations[J]. The local compact ease, Part Ⅰ, Ann. Inst. H. Poincare Anal. Non Lineaire. ,1984,1(4):109-145.
  • 4Lions P. L..The concentration-compactness principle in the caluculas of variations[J]. The local compact case, Part Ⅱ. Ann. Inst. H. Poincare Anal. Non Lineaire. , 1984,1 (4):223-283.
  • 5Ambrosetti A. , Badiale M.. Homoclinics:Poincare-Melinikov type results via a variational approach[J]. Ann. Inst. H. Poincare Anal. Non Lineaire. , 1998,15:233-252.
  • 6Ambrosetti A. ,Badiale M.. Variational perturbative methods and bifurcation of bound states from fhe essential spectrum[J].Proc. Roy. Soc. Edinburgh Sect. A, 1998,128 :1131-1161.
  • 7Ambrosetti A. ,Garcia Azorero J. I. Peral. Perturbation of Au+u^(N+2)/(N-2) = 0, the scalar curvature problem in R^N, and related topics[J].Funct. Anal. , 1996,165 : 117-149.
  • 8Terracini S.. On positive entire solutions to a class of equations with a singular coefficient and critical exponent[J]. Advances in Differential Equations, 1996,1(2) : 241-264.
  • 9Felli V. , M. Schneider. Perturbation results of critical elliptic equations of caffarellikohn-niren-berg type[J]. Journal of Differenial Equations, 2003,1(191) : 121-142.

同被引文献17

  • 1Kang D S,Peng S J.Solutions for semi-linear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential[J].Appl.Math.Lett.,2005,18(10):1094-1100.
  • 2Shen Z F,Yang M B.Nontrivial solution for Hardy-Sobolev critical elliptice equations[J].Acta.Math.Sinica,2005,48(5):999-1010.
  • 3Willem M.Minimax Theorems[M].Boston:Birkh(a)user,1996.
  • 4Chou K S,Chu C W.On the best constant for a weighted Sobolev-Hardy inequality[J].J.London Math.Soc.,1993,48(2):137-151.
  • 5Ghoussoub N,Kang X S.Hardy-Sobolev critical elliptic equations with boundary singularities[J].Ann.I.H.Poincare-AN,2004,21(6):767-793.
  • 6Ghoussoub N,Yuan C.Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J].Trans.Amer.Math.Soc,2000,352(12):5703-5743.
  • 7Kang D S,Peng S J.Positive solutions for singular critical elliptic problems[J].Applied Math.Letters,2004,17(4):411-416.
  • 8Castro A,Maya C,Shivaji R.Nonlinear eigenvalue problems with semipositone structure[J].E.J.Diff.Eqns.,2000,5:33-49.
  • 9Castro A,Shivaji R.Nonnegative solutions for a class of nonpositone problems[J].Proc.Roy.Soc.Edin.,1988,108(A):291-302.
  • 10Anuradha A,Dickens S,Shivaji R.Existence results for nonautonomous elliptic boundary value problems[J].E.J.Diff.Eqns.,1994,1994(4):1-10.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部