期刊文献+

基于PICA的过程监控方法 被引量:5

PICA based process monitoring method
下载PDF
导出
摘要 工业过程中普遍存在噪声污染,本文在概率主元分析方法(PPCA)的基础上,把该方法推广到非高斯过程,提出一种新的基于概率独立成分分析(PICA)的过程监控方法。针对过程的非高斯和噪声信息,分别建立其对应的统计量I2和MR。通过对Tennessee Eastman(TE)过程的仿真研究,验证了该方法的可行性和有效性,较好地改善了过程的监控效果,从而更好地保证过程运行的安全、稳定性。 Noise corruption always exists in the industrial process. Based on the probabilistic principal component analysis (PPCA) method, a new process monitoring method based on probabilistic independent component analysis (PICA) was proposed, which extends PPCA to the non-Gaussian process, Two statistical quantities (I^2 and MR) were constructed for monitoring non-Gaussian and noise information of the process. A case study of the Tennessee Eastman (TE) process showed that the proposed method was feasible and efficient. The process monitoring performance was evidently improved, thus enhancing the reliability and stability of the TE process.
出处 《化工学报》 EI CAS CSCD 北大核心 2008年第7期1665-1670,共6页 CIESC Journal
基金 国家自然科学基金项目(60774067)~~
关键词 概率独立成分分析 非高斯 噪声污染 probabilistic independent component analysis non-Gaussian noise corruption
  • 相关文献

参考文献12

  • 1Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. London: Springer- Verlag, 2001
  • 2Kim D, Lee I B. Process monitoring based on probabilistic PCA. Chemometrics and Intelligent Laboratory Systems, 2003, 67:109-123
  • 3赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 4Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Network, 2000, 13: 411-430
  • 5Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChEJournal, 2003, 49 (4): 969-976
  • 6Xie L, Wu J. Gobal optimal ICA and its application in MEG data analysis. Neurocomputing, 2006, 69:2438-2442
  • 7陈国金,梁军,钱积新.独立元分析方法(ICA)及其在化工过程监控和故障诊断中的应用[J].化工学报,2003,54(10):1474-1477. 被引量:30
  • 8He Ning(何宁).Research on performance monitoring and fault diagnosis for process industry based on ICA PCA method[D]. Hangzhou: Zhejiang University, 2004: 31-54
  • 9Hyvarinen A. A fast fixed point algorithm for independent component analysis. Neural Computation, 1997, 9:1483-1492
  • 10Chen Q, Kruger U, Andrew T Y Leung. Regularised kernel density estimation for clustered process data. Control Engineering Practice, 2004, 12:267-274

二级参考文献7

  • 1梁军,钱积新. Multivariate Statistical Process Monitoring and Control: Recent Developments and Applications to Chemical Industry. Chinese J of Chemical Eng, 2003, 11 (2): 191--203.
  • 2Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis. 4th ed. Englewood Cliff, NJ: Prentice Hall, 1998.
  • 3Ypma A, Tax D, Duin R. Robust Machine Fault Detection with Independent Component Analysis and Support Vector Data Description. In: Proc of the 1999 IEEE Signal Processing Society Workshop, 1999.67 - 76.
  • 4Hyvarinen A, Oia E. Independent Component Analysis:Algorithms and Applications. Neural Networks, 2002, 13:411-430.
  • 5Tax D, Duin R. Support Vector Domain Description. Pattern Recognition Letters , 1999, 20:1191 -- 1199.
  • 6Luyben W. Process Modeling, Simulation, and Control for Chemical Engineers. 2nd ed. New York: McGraw-Hill, 1988.
  • 7王海清,宋执环,李平.改进PCA及其在过程监测与故障诊断中的应用[J].化工学报,2001,52(6):471-475. 被引量:41

共引文献51

同被引文献36

  • 1汪志锋,袁景淇.Online Supervision of Penicillin Cultivations Based on Rolling MPCA[J].Chinese Journal of Chemical Engineering,2007,15(1):92-96. 被引量:9
  • 2赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 3张颂.创造和谐环境控制噪声污染[C].中国环境科学学会2010年学术年会论文集,2010:3710-3712.
  • 4Qin S J.Statistical process monitoring: basics and beyond [J].Journal of Chemometrics,2003,17 (7/8): 480-502.
  • 5Ge Z,Song Z,Gao F.Review of recent research on data-based process monitoring [J].Industrial & Engineering Chemistry Research,2013,52 (10): 3543-3562.
  • 6Qin S J.Survey on data-driven industrial process monitoring and diagnosis [J].Annual Reviews in Control,2012,36 (2): 220-234.
  • 7Fan J,Wang Y.Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis [J].Information Sciences,2014,259: 369-379.
  • 8Lee J M,Yoo C K,Choi S W,Vanrolleghem P A,Lee I B.Nonlinear process monitoring using kernel principal component analysis [J].Chemical Engineering Science,2004,59 (1): 223-234.
  • 9Tong C,Song Y,Yan X.Distributed statistical process monitoring based on four-subspace construction and Bayesian inference [J].Industrial & Engineering Chemistry Research,2013,52 (29): 9897-9907.
  • 10Zhao C,Wang F,Zhang Y.Nonlinear process monitoring based on kernel dissimilarity analysis.Control Engineering Practice,2009,17 (1): 221-230.

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部