期刊文献+

阶梯算符方法在稀薄费米气体热力学性质研究中的应用 被引量:2

Application of the Ladder Operator Methods in the Research on Thermodynamic Characteres of the Rarefaction Fermi Gas
下载PDF
导出
摘要 从量子力学算符代数关系出发,引入阶梯算符将系统能量算符表达式简化,导出非对易相空间二维谐振势场中稀薄费米气体的能级公式.给出稀薄费米气体的化学势、内能和热容量依赖于非对易效应参数λ的函数关系.探讨非对易相空间效应对稀薄费米气体热力学性质的影响. Based on the operator algebra relation of the quantum mechanics, the paper introduces the Ladder Operator to simplify energy operator expression of system and educes the Energy Level Formula of the Rarefaction Fermi Gas in the two- dimensional harmonic oscillator potential field in the noncommutative phase space(NCS). The function relations are given and the chemicial potential , internal energy and heat capacity of the rarefaction Fermi gas depend on noncommutative effect parameter λ, the influnce degree of the system thermodynamic characteres which influenced by noncommutative phase space efect is also discussed.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期74-76,112,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 陕西省自然科学基础研究计划(2006A15) 和陕西省教育厅专项科研计划(06JK326)
关键词 阶梯算符 谐振势 非对易相空间 费米气体 热力学性质 ladder operator harmonic oscillator potential NCS fermi gas thermodynamic characteristics
  • 相关文献

参考文献8

  • 1Bagnato V, Kleppner D. Bose-Einstein condensation in low-dimensional traps[J], Phys Rev A, 1991,44 (11): 7349-7441.
  • 2Ketterle W,van Druten N J. Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions[J], Phys Rev A,1996,54(1) :656-660.
  • 3孙彦清,龙姝明,黄朝军,张锴.空间非对易对稀薄玻色气体内能和热容量的影响[J].四川师范大学学报(自然科学版),2008,31(3):342-345. 被引量:3
  • 4Truscott A G, Strecker K E, McAlexander W I, et al. Observation of Fermi pressure in agas of trapped atoms[J]. Science. 2001,291:2570-2572.
  • 5Seiberg N, Witten E. String Theory and Noncommutative Geomety[J]. HEP, 1999,9: 32.
  • 6Kang Li ,Jian-hua Wang,Chen Chi-Yi. Representation of Noncommutative Phase Space[J]. Modern Physics Letter A,2005,20(28) :2165-2174.
  • 7Chaichian M,Sheikh-Jabbari M M,Tureanu A. Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED[J]. Phys Rev Lett,2001,86:2716.
  • 8李康 CHAMOUN Nidal.Hydrogen Atom Spectrum in Noncommutative Phase Space[J].Chinese Physics Letters,2006,23(5):1122-1123. 被引量:14

二级参考文献26

  • 1Ardalan F, Arfaei H and Sheikh-Jabbari M M 1999 JHEP 016 9902 (hep-th/9810072).
  • 2Curtright T, Fairlie D and Zachos C 1998 Phys. Rev. D 58 25002 Mezincescu L hep-th/0007046.
  • 3Chu S Cand Ho P M 1999 Nucl. Phys. B 550 151 (hep-th/9812219).
  • 4Chu S C and Ho P M 2000 Nucl. Phys. B 568 447 (hep-th/9906192).
  • 5Schomerus V JHEP 1999 030 9906 (hep-th/9903205).
  • 6Douglas M R and Nekrasov N 2001 Rev. Mod. Phys. 73 977.
  • 7Li K, Wang J H and Chen C Y 2005 Mod. Phys. Lett. A 20 2165.
  • 8Li K and Dulat S hep-th/0508060.
  • 9Li K and Dulat S hep-th/0508193.
  • 10Chaichian M, Sheikh-Jabbari M M and Tureanu A 2001 Phys. Rev. Lett. 86 2716.

共引文献15

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部