期刊文献+

运用布尔网络模型和贝叶斯网络模型推测基因调控网络的比较研究

Comparative Study on Gene Regulatory Network between Boolean Network and Bayesian Network
下载PDF
导出
摘要 基因调控网络的研究从基因之间相互作用的角度揭示复杂的生命现象,是功能基因组学研究的重要内容,也是当前生物信息学研究的前沿。布尔网络模型和贝叶斯网络模型都是研究基因调控网络的有力工具。本文分别采用布尔网络模型和贝叶斯网络模式推测基因调控网络,实验结果显示布尔网络推测出了7条正确的调控关系,而贝叶斯网络仅推测出5条正确的调控关系,在本实验中推测基因之间的调控关系正确数布尔网络模型优于贝叶斯网络模型。 Gene regulatory network, which focuses on the complex interactions of genes in life, is an important part in the study of the functional genomics and is the frontier of bioinformatics research. Bayesian network and Boolean network are powerful tools to genetic networks research. Bayesian network and Boolean network are applied to the analysis of the Saccharomyces cerevisiae cell cycle gene expression data. The results show that seven correct for regulatory relations can be inferred from the Boolean network, while only five ones can be inferred from Bayesian network.
出处 《四川农业大学学报》 CSCD 2008年第2期176-179,共4页 Journal of Sichuan Agricultural University
基金 教育部“长江学者和创新团队发展计划” “猪抗病营养的分子机制”团队项目(项目标号:IRT0555-6),2006-2008
关键词 布尔网络 贝叶斯网络 基因调控网络 模型 Boolean network Bayesian network gene regulatory network modeling
  • 相关文献

参考文献20

  • 1Friedman N, Linlal M, Naehman I. Using Bayesian networks to analyze expression data[J]. Journal of Computational Biology, 2000, 7: 601-620.
  • 2Inioto S, Goto T, Miyano S. Estimation of genetic networks and functional structures between genes by using BN and nonparametric regression[J]. Pacific Symposium on Biocomputing, 2002, 7: 175-186.
  • 3Imoto S, Kim S, Goto T, et al. bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network[J]. Journal of Bioin f ormatic s and Computational Biology, 2003, 1 (2) : 231-252.
  • 4Vohradsk J. Neural network model of gene expression[J]. The FASEB Journal, 2001, 15 : 846-854.
  • 5Herrero J, Valeneia A, Dopazo J. A hierarehieal unsupervised growing neural network for elustering gene expression patterns [J]. Bioinforraatics, 2001, 17: 126-136.
  • 6Chen T. Modeling gene expression with differential equations [J]. Pacific Symposium on Biocomputing (PSB99), 1999, 29-41.
  • 7Sakamoto E, Iba H. Inferring a system of differential equations for a gene regulatorynetwork by using genetic programming[J]. Proceedings of the 2001 Congress on, 2001, 1: 720-726.
  • 8Akutsu T, Miyano S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model[J]. Pacific Symposium on Biocomputing, 1999, 4: 17-28.
  • 9Akutsu T, Miyano S, Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways[J]. Bioinformatics, 2000, 18(8): 727-734.
  • 10Shmulevich I, Dougherty E R. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks[J]. Bioinformatics, 2002, 18(2): 261 - 274.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部