期刊文献+

一种辨识Wiener-Hammerstein模型的新方法 被引量:5

New method for identification of Wiener-Hammerstein model
下载PDF
导出
摘要 针对非线性Wiener-Hammerstein模型,提出利用粒子群优化算法对非线性模型进行辨识的新方法.该方法的基本思想是将非线性系统的辨识问题转化为参数空间上的优化问题;然后采用粒子群优化算法获得该优化问题的解.为了进一步增强粒子群优化算法的辨识性能,提出利用一种混合粒子群优化算法.最后,仿真结果验证了该方法的有效性和可行性. For nonlinear Wiener-Hammerstein model, a method for nonlinear system identification is proposed by using particle swarm optimization (PSO) algorithm. The basic idea of the method is that the problems of nonlinear system identification is changed into optimization problems in parameter space and the PSO is then adopted to solve the optimization problem. In order to enhance the performance of the PSO identification, a hybrid particle swarm optimization (HPSO) algorithm is also adopted. Finally, simulation results show the effectiveness and the feasibility of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2008年第8期929-934,共6页 Control and Decision
基金 教育部博士学科基金项目(20060700007) 陕西省自然科学基金项目(2005F15)
关键词 辨识 混合 粒子群优化 Wiener-Hammerstein模型 Identification Hybrid Particle swarm optimization Wiener-Hammerstein model
  • 相关文献

参考文献13

  • 1Sjoberg J, Zhang Q, Ljung L, et al. Nonlinear blackbox modeling in system identification a unified overview [J]. Automatica, 1995, 31(12) : 1691-1724.
  • 2Boutayeb M, Darouach M. Recursive identification method for MISO Wiener-Hammerstein model[J]. IEEE Trans on Automatic Control, 1995, 40(2): 287-291.
  • 3柯晶,姜静,乔谊正.应用混合进化策略辨识Wiener-Hammerstein模型[J].系统工程与电子技术,2006,28(7):1055-1058. 被引量:4
  • 4Bershad N J, Bouchired S, Castanie F. Stochastic analysis of adaptive gradient identification of Wiener- Hammerstein systems for gaussian inputs [J]. IEEE Trans on Signal Processing, 2000, 48(2): 557-560.
  • 5Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc IEEE Int Conf on Neural Networks. Piscataway, 1995: 1942-1948.
  • 6李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 7朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 8Fukuyama Y. Fundamentals of swarm techniques[C]. Modern Heuristic Optimization Techniques With Applications to Power Systems. Anchorage: IEEE Power Engineering Society, 2002: 45-51.
  • 9He Z, Wei C, Yang L, et al. Extracting rules from fuzzy neural network by particle swarm optimization [C]. Proc of IEEE Congress on Evolutionary Computation. Anchorage, 1998: 74-77.
  • 10Eberhart R C, Hu X. Human tremor analysis using particle swarm optimization [C]. Proc of the IEEE Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 1999: 1927-1930.

二级参考文献50

共引文献462

同被引文献38

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部