摘要
[目的]研究表面活性剂SDS和DBS对水环境的污染程度,分析比较2类毒性数据处理方法的优劣。[方法]以褐点石斑鱼(Epinephelus fuscoguttatus)变态期仔鱼作为指示生物,采用静水法生物测试研究SDS和DBS的急性毒性。建立直线回归模型,并用非线性最小二乘拟合技术构建非线性回归模型,预测表面活性剂的毒性效应。[结果]2种表面活性剂的直线方程F检验均为极显著;其剂量—效应曲线(DRC)均可用双参数模型Weibull与Logit函数有效表征。直线和非线性回归模型对2种表面活性剂毒性效应估算表明,预测半致死浓度时,2种模型差异可忽略不计;预测极端效应浓度时,差异显著。直线回归模型估算的安全浓度SDS为0.4292mg/L,DBS为0.9543mg/L;双参数模型对48hLC50拟合预测值SDS为1.5033mg/L,DBS值为3.3416mg/L,两者预测结果一致,毒性均为SDS大于DBS。[结论]试验结果为研究表面活性剂污染对水环境造成的危害及评价提供参考资料,并为毒性数据的分析处理提供一种可供参考的新模式。
[Objective] A research to water environment pollution by surfactants (SDS and DBS),Comparison of the two kinds of processing methods on toxicity data. [Method] Using the Admit-fin larvae of Epinephelus fuscoguttatus as the bioindicator,the acute-toxicity of surfactants was studied with the static test method.Linear regression was established,and nonlinear least-squares fitting technique was apply to construct nonlinear regression model.Predicting surfactant of toxic effect. [Result] Firstly,the linear regression of function was very significant by F test,and the dose-response curve(DRC)for surfactants was effectively characterized by two-parameter model-Weibull or Logit function.Secondly,using linear regression model and nonlinear regression model to estimate toxicity effect,the differences of two kinds of models was neglected in predicting LC50.While,the differences of two kinds of models was significant in predicting extreme concentration.Thirdly,safe concentration of SDS and DBS was 0.429 2 mg/L,0.954 3mg/L by linear regression model,Median lethal concentration of SDS and DBS was 1.503 3 mg/L,3.341 6 mg/L by two-parameter model,prediction results is uniform,the toxicity of SDS was more than DBS. [Conclusion] The experimental results supplied reference for water pollution and evaluation; A new pattern was provide of analysis on toxicity data.
出处
《安徽农业科学》
CAS
北大核心
2008年第21期9087-9090,共4页
Journal of Anhui Agricultural Sciences
基金
广东省科技厅科技攻关项目(2006B20201059)
广东省海洋与渔业局科技兴海招标项目(A200608C02)
关键词
表面活性剂
急性毒性
直线回归模型
非线性回归模型
褐点石斑鱼
Surfactants
Acute -toxicity
Linear regression model
Nonlinear regression model
Epinephelus fuscoguttatus