期刊文献+

UKF及其在目标跟踪中的应用 被引量:12

UKF and Its Application to Target Tracking
下载PDF
导出
摘要 在高斯噪声环境下,为了解决扩展卡尔曼滤波(EKF)在目标跟踪应用中精度低和滤波发散的问题,将无迹卡尔曼滤波(UKF)应用于非线性系统的目标跟踪。研究了无迹卡尔曼滤波估计方法,对采样策略进行了比例修正。通过UKF在目标跟踪中的应用仿真结果表明,与EKF相比较,UKF有更好的跟踪性能、收敛快、对噪声有更强的适应能力,算法实现简单。 The Extended Kalman Filter (EKF) is widely applied to target tracking in Gaussian noise environment. However its drawbacks are poor filtering precision and filtering disconvergence. In order to overcome those the Unscented Kalman Filter(UKF) is applied to target tracking in nonlinear system, and sampling strategy is proportionably modified. UKF is compared with EKF for target tracking. Simulation results show that UKF is superior in filtering precision, and provides stronger ability to suppress noise in lower complex.
出处 《火力与指挥控制》 CSCD 北大核心 2008年第8期27-29,共3页 Fire Control & Command Control
基金 国家自然科学基金资助项目(60501004)
关键词 无迹卡尔曼滤波(UKF) 目标跟踪 扩展卡尔曼滤波(EKF) Unscented Kalman Filter (UKF),target tracking, Extended Kalman Filter (EKF)
  • 相关文献

参考文献7

  • 1Simon J J. The Scaled Unscented Transformation [A]. Proceedings of American Control Conference [C],2002.
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 3Farina A,Ristic B D B. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters [J]. IEEE Transactions on Aerospace and Electronic System, 2002,38(3) : 854-867.
  • 4马野,王孝通,戴耀.基于UKF的神经网络自适应全局信息融合方法[J].电子学报,2005,33(10):1914-1916. 被引量:16
  • 5吴玲,卢发兴,刘忠.UKF算法及其在目标被动跟踪中的应用[J].系统工程与电子技术,2005,27(1):49-51. 被引量:39
  • 6Eric A W,Van D M. The Unscented Kalman Filter for Nonlinear Estimation [A]. Proc of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control[C],2000.
  • 7Julier S,Uhlmann,Durrant W H F. A New Method for the Nonlinear TransforMation of Means and Covariance in Filters and Estimators [J]. IEEE Transactions on Automatic Control, 2000,45 (3) : 477-482.

二级参考文献87

  • 1董志荣.舰艇指控系统的理论基础[M].北京:国防工业出版社,1995..
  • 2卢晓林 刘忠 卢发兴.一种拟线性的目标方位预测算法.海军工程大学学报,2001,.
  • 3Wan E A, van der Merwe R. The unscented kalman filter for nonlinear estimation [C]. Proc. of IEEE Symposium 2000 (AS-SPCC), Lake Louise, Alberta, Canada, Oct. 2000.
  • 4van der Merwe R, Wan E A R. The square-root unscented kalman filter for state and parameter-estimation[C]. International Conference on Acoustics,Speech, and Signal Processing 2001, Salt Lake City, Utah, May, 2001.
  • 5Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems [C]. Proc. of AeroSense: The 11 th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, 1997.
  • 6Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 7Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 8Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 9Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 10Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.

共引文献279

同被引文献94

引证文献12

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部