期刊文献+

■类整谱图 被引量:1

Integral Graphs Belong to the Class ■
下载PDF
导出
摘要 设图G是一个简单图,图G的补图记为G,如果G的谱完全由整数组成,就称G是整谱图.鸡尾酒会图G=CP(n)=K2n-nK2(K2n是完全图)是整谱图.确定了图类αCP(a)∪βCP(b)中的所有整谱图. Let G be a simple graph and G its complement. A graph G is called integral if its spectrum consists entirely of integers.Cocktail party graphs G = CP(n) =K2n-nK2 is an integral graph.All the integral graphs ofαCP(a)∪βCP(b) is determined.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2008年第1期31-34,共4页 Journal of Natural Science of Hunan Normal University
基金 湖南省教育厅科学研究资助项目(06A037)
关键词 整谱图 主特征值 丢番图方程 鸡尾酒会图 integral graph main eigenvalue diophantion equation cocktail party graph
  • 相关文献

参考文献7

  • 1LEPOVIC M. On integral graphs which belong to the class αKa∪βKb[J].J Appl Math Computing,2004,14:39-49.
  • 2LEPOVIC M. On integral graphs which belong to the class αKa,b[J].Graphs and Combinatorics ,2003 ,19 :527-532.
  • 3LEPOVIC M. On integral graphs which belong to the class αKa∪βKb,b[J].Discrete Mathematics,2004,285:183-190.
  • 4侯耀平,周后卿.恰有两个主特征值的树[J].湖南师范大学自然科学学报,2005,28(2):1-3. 被引量:19
  • 5LEPOVIC M. Some results on graphs with exactly two main eigenvalues[J]. Univ Beogra Publ Elektro-tehn (Set Mat) ,2001, 12:68-84.
  • 6华罗庚.数学导论[M].北京:科学出版社,1979.
  • 7杜德利.基础数学[M].上海:上海科技出版社,1980.

二级参考文献6

  • 1CVETKOVI(C) D, FOWLER P W. A group-theoretical bound for the number of main eigenvalues of a graph[ J]. J Chem inf Comput Sci,1999,39:638-641.
  • 2CVETKOVI(C) D, ROWLINSON P, SIMIC S. Eigenspaces of graphs[M]. Cambrige: Cambridge University Press, 1997.
  • 3HAGOS E M. Some results on graph spectra[J]. Linear Algebra and Its Applications,2002,356:103-111.
  • 4LEPOVIC(C) M. A note on graphs with two main eigenvalues[J]. Kragujevac J Math, 2002, (24) :43-53.
  • 5CVETKOVIC D, DOOB M, SACHS H. Spectra of graphs:Theory and applications, 3rd revised and enlarged edition[ M]. Heidelberg,Leipzig: Barth, 1995.
  • 6GR(U)NEWALD S. Harmonic trees[J]. Appl Math Letters, 2004,15(8): 1 001-1 004.

共引文献18

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部