摘要
遗传算法以编码空间代替问题的参数空间,以适应度函数为评价依据,以编码群体为进化基础,以对群体中个体位串的遗传操作实现选择和遗传机制,建立一个迭代过程。通过随机重组编码位串中重要的基因,使新一代的位串集合优于老一代的位串集合,群体个体不断进化,逐渐接近最优解,最终达到求解。
Genetic algorithm establishes an iterative process in which genetic algorithm substitutes code space for parameter space, applies fitness function as evaluation standard, takes code space as evolutionary basis, realizes selective and genetic mechanism by genetic operation on individual bunch. It randomly reforms the important gene of code bunch to optimize the new individual bunch and make individual evolve continuously to get optimization result.
出处
《兵工自动化》
2008年第9期60-62,共3页
Ordnance Industry Automation
关键词
遗传算法
优化
收敛性
Genetic algorithm
Optimization
Convergence