期刊文献+

一种自适应最优化小波变换算法及应用

An adaptive optimization wavelet transform algorithm and its application
下载PDF
导出
摘要 传统的二进小波变换对非2的整数幂的数据要进行大量的边界处理,针对这一局限性,提出一种自适应最优化小波变换算法。其核心是通过解析被处理数据长度来捕获其长度的最佳逼近值,实现边界处理的最优化;通过分解最佳逼近长度来获取各层次小波变换基数,实现小波变换基数选择的自适应。与二进小波变换相比,自适应最优化小波变换算法具有运算速度快,边界处理量少,数据压缩量大等特点。最后通过一个图像压缩的应用实例表明了此算法的可行性。 For the traditional dyadic wavelet transform, a lot of boundary treatments are needed when the data length is not 2 of integer power. Aiming at such a limitation, a new adaptive optimization wavelet transform algorithm was proposed. The core idea is analyzing the pending data to obtain the optimal approximate length, hence optimize the boundary treatment, while analyzing the optimal approximate length to select the wavelet transform bases adaptively. Compared with the traditional dyadic wavelet transform, the proposed algorithm hashigher speed, less boundary treatment, and greater data compression, etc. An image compression example was given to demonstrate the feasibility of the proposed algorithm.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期1028-1033,共6页 Journal of Chongqing University
基金 国家自然科学基金重点资助项目(50735008) 霍英东教育基金会11届青年教师基金资助项目(111057) 教育部长江学者和创新团队支持计划资助项目(PCSIRT0763)
关键词 边界处理 自适应最优化小波变换 最佳逼近长度 小坡变换基数 boundary treatment adaptive optimization wavelet transform optimal approximate length wavelet trans{orm base
  • 引文网络
  • 相关文献

参考文献15

  • 1朱长青,王倩,陈虹,史文中,王耀革.基于多进制小波变换的图象放大方法[J].中国图象图形学报(A辑),2002,7(3):261-266. 被引量:21
  • 2ZHANG Dong,YANG Yan,QIN Qianqing.Nonlinear Adaptive Wavelet Transform for Lossless Image Compression[J].Wuhan University Journal of Natural Sciences,2007,12(2):267-270. 被引量:2
  • 3DUAN J, OWEIS I S. Dyadic wavelet analysis of PDA signals[J]. Soil Dynamics and Earthquake Engineering, 2005,25(7-10):661-677.
  • 4ZHANG L,BAO P. Edge detection by scale multiplication in wavelet domain[J]. Pattern Recognition Letters, 2002,23 (14) :1771-1784.
  • 5VEPREK P, SCORDILIS M S. Analysis, enhancement and evaluation of five pitch determination techniques[J]. Speech Communication,2002,37(3-4) :249-270.
  • 6LAW N F, SIU W C. A filter design strategy for binary field wavelet transform using the perpendicular constraint [J]. Signal Processing, 2007, 87 (11): 2850 -2858.
  • 7林福宗.小波与小波变换[D].北京:清华大学,2001.
  • 8WANG Z, LEUNG C S, ZHU Y S,et al. Data compression with spherical wavelets and wavelets for the image-based relighting[J]. Computer Vision and Image Understanding, 2004,96(3) : 327-344.
  • 9付永庆,黄福锦,李鹏.一种新的基于能量分布的图像压缩方法[J].哈尔滨工程大学学报,2003,24(5):556-559. 被引量:2
  • 10WAMG C Y, LIAO S J, CHANG L W. Wavelet image coding using variable blocksize vector quantization with optimal quadtree segmentation [J]. Signal Processing:Image Communication, 2000,15 (10) : 879-890.

二级参考文献18

  • 1王祥林,吴国威,林行刚.一种基于零树的多码率小波图象编码方法[J].电子学报,1997,25(4):48-51. 被引量:19
  • 2[1]J M Shapiro. Embedded image coding using zerotrees of wavelet coefficients. Special Issue on Wavelets and Signal Processing, 1993, 41(12):3445-3462
  • 3[2]A Said, W A Pearlman. A fast and efficient image codes based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(6):243-250
  • 4[3]M Barlaud, P Sole, T Gaidon, et al. Pyramidal lattice vector quantization for multiscale image coding. IEEE Transactions on Image Processing, 1994, 3(4):367-381
  • 5[4]M Antonini, M Barlaud, P Mathieu, et al. Image coding using wavelet transform. IEEE Transactions on Image Processing, 1992, 1(4):205-220
  • 6Ingrid Daubechies,Wim Sweldens.Factoring wavelet transforms into lifting steps[J].The Journal of Fourier Analysis and Applications.1998(3)
  • 7Hyungtai Cha,Luis F. Chaparro.Adaptive Morphological Representation of Signals: Polynomial and Wavelet Methods[J].Multidimensional Systems and Signal Processing.1997(3)
  • 8Goutsia J,Heijmans H.Nonlinear Multiresolution Signal Decomposition Scheme-Part II: Morphological Wavelets[].IEEE Transactions on Image Processing.2000
  • 9Boomgard R,Smedulders A.The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1994
  • 10Said A,Pearlman H E.An Image Multiresolution Represen- tation for Lossless and Lossy Image Compression[].IEEE Transactions on Image Processing.1996

共引文献33

;
使用帮助 返回顶部