期刊文献+

基于MATLAB的IHS变换与小波变换影像融合与应用 被引量:11

Method of Fused Image Based on IHS and Wavelet Transform and Realization in MATLAB
下载PDF
导出
摘要 为了提高Landsat系列卫星多光谱影像的目视解译效果,提出了一种基于IHS变换和小波变换相结合的影像融合方法。在Matlab开发环境下,将多光谱影像的亮度分量I与全色影像先进行直方图匹配,以加大两者的相关性,减小融合影像的光谱偏差,然后分别进行小波分解,最后按照一定融合规则进行影像融合。融合规则中最重要的是小波基、小波分解层数和小波系数的选择。通过比较不同的小波基函数,在不同分解层数下的统计参数值及目视融合效果,最终确定选择coif5作为小波基函数,进行三层小波分解。小波高频系数的选择采用区域的标准差法,选取以当前处理像元为中心的局部区域标准差最大的影像小波系数作为融合影像对应的小波系数。从融合后影像看,本文提出的方法要优于单一的IHS或小波变换融合方法,道路、河流、农田及林地等纹理及细节信息都较融合前明显提高,同时,较高的相关系数和较低的光谱扭曲度,表明光谱信息也保留很好。实验表明,将ETM+多光谱影像和全色影像融合的方法是可行的,融合后影像不仅空间分辨率明显提高,而且又较好地保留了多光谱影像的光谱信息特征。 In order to improve eye-interpretation effect of multi-spectral images of Landsat series, an integrated technique based on IHS and wavelet transformation is proposed in this paper. For increasing relativity and decreasing spectral deviation, firstly, under the developing environment of Matlab, the intensity component of multi-spectral image and the panchromatic image histogram wavelet, finally fuse images by special rules. bases, ties out wavelet decomposed layers and wavelet repeated match each other, and then decompose respectively using Among the rules, the most important thing is the choice of wavelet coefficients. In order to choose the best parameters, the author carexperiments using assessment parameters : mean value, standard deviation, average gradient, correlation coefficient and spectral distortion. Compared with other parameters, wavelet base of coifs made better fusing result in this paper. Therefore, parameters are fixed on coif5 and decomposed of three layers, and reconstructed coefficients based on regional standard difference. The experiment indicates that the proposed method is much better than single transform of IHS or wavelet. Observed from the fused image, the lines and details of road, river, farm and forest are improved obviously. At the same time, the higher correlation coefficient and the lower distortion show that spectral spectral information is kept down well. The experiment through fused ETM + multi-spectral and panchromatic images verified the method of the author proposed is feasible, the result is not only improved obviously in spatial resolution, but also preserves multi-spectral information effectively.
出处 《地球信息科学》 CSCD 2008年第5期670-677,共8页 Geo-information Science
基金 国家高技术研究发展计划863计划2006AA12Z104 黑龙江省攻关课题"嫩江荒漠化土地遥感定量评价研究"(GC04B713)
关键词 遥感 融合 IHS变换 小波变换 小波基 小波系数 remote sensing image fusion HIS transform wavelet transform wavelet parameters
  • 相关文献

参考文献11

二级参考文献55

  • 1李军,林宗坚.基于特征的遥感影像数据融合方法[J].中国图象图形学报(A辑),1997,2(2):103-107. 被引量:51
  • 2崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 3赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997..
  • 4Broud G D,Jacky G,Jean M C,et al. The Use of Multi-resolution Analyse and Wavelet Transform for Merging SPOT PanChromatic and MultiSpectral Image Data[J].PE&RS,1996,(9):340-352.
  • 5Pellemans A H J M,Jorddans R W L,Allewiijin R. Merging multispectral and panchromatic SPOT images with respect to the radiometric properties of the sensor[J]. PE&RS,1993,59(1):81-87.
  • 6Hayden R,Dalke G W,Henkel J,Bare J E. Application of the IHS color transform to the processing of multisensor data and image enhancement[A].Proceedings of the International Symposium on Remote Sensing of Arid and Semi-arid Lands[C].Cairo,Egypt,1982:599-616.
  • 7Jim V. Multispectral imagery band sharpening study[J]. PE&RS,1996,62(9):1075-1083.
  • 8Yesou H,Besnus Y,Rolet Y. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery-Acontribution to the study of Geological structures[J]. ISPRS Journal of Photogrammetry and Remote sensing,1993,48(5):23-36.
  • 9Herbin M, Ventor A, Devaux J Y et al. Automated recognition of dissimilar image: Application to Medical imagery. Computer Vision, Graphics, and Image Procesdng, 1989, 47:77~88
  • 10Zikan K. An efficient exact algorithm forthe 'Least Squares' image registration problem.NTIS, 1989, AD-A208: 725.

共引文献180

同被引文献125

引证文献11

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部