期刊文献+

基于驱动响应同步的混沌背景下谐波信号频率估计方法 被引量:1

A frequency estimation Method for harmonic Signal Submerged in Chaotic background based on chaotic drive-response synchronization
下载PDF
导出
摘要 提出一种基于混沌驱动响应同步的强混沌背景下谐波频率估计的方法。该方法利用采样的混合信号(混沌加谐波)驱动一新构建的同类响应混沌系统,若响应混沌系统同步于驱动混沌信号,则驱动响应信号的误差序列中应含有谐波成分,对误差序列互谱的分析,估计谐波频率。该方法同时也适于其它噪声加混沌干扰的复合背景下的谐波频率估计。理论分析给出了该方法的适用条件,仿真实验证明该方法简单有效。 This paper presents a frequency estimation method for weak harmonic signal embedded in chaotic 'noise' based on drive-response chaotic synchronization. First of all, we use the mixed signals (chaotic signal and harmonic signal ) to drive a new response chaotic system which is same with the driving system, when chaotic synchronization occurred, the error data series between drive and response signal have the harmonic signal, using cross spectrum method, it's easy to es- timate the harmonic frequency. The method is also suit for the situation where background interference signals is mixture of chaotic signal and other kind of noise. The theorem proving give the applying situation and simulation experiments show that the method is simple and effective.
出处 《长春理工大学学报(自然科学版)》 2008年第3期52-55,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省自然科学基金项目(60172032)
关键词 混沌同步 驱动响应 谐波信号 频率估计 chaotic synchronization drive-response harmonic signal frequency estimation
  • 引文网络
  • 相关文献

参考文献8

  • 1Leung H, Huang X P. Parameter estimation in chaotic noise [ J ]. IEEE Trans Sig Proc, 1996,44:2456-2461.
  • 2Haykin S, Li X B. Dctection of signals in chaos[J].Proc IEEE, 1995, 83: 94-98.
  • 3Short K M. Steps toward unmasking secure communications [ J ]. Int J Bif Chaos, 1994,14 : 957-961.
  • 4Broomhead D S,Huke J P,Potts A S. Cancelling deterministic noise by constructing nonlinear inverses to linear filters [ J ]. Physical D, 1996,89: 439-458.
  • 5陈争,曾以成,付志坚.混沌背景中信号参数估计的新方法[J].物理学报,2008,57(1):46-50. 被引量:15
  • 6汪芙平,郭静波,王赞基,萧达川,李茂堂.强混沌干扰中的谐波信号提取[J].物理学报,2001,50(6):1019-1023. 被引量:40
  • 7Pecora L M, Carroll T L. Synchronization in chaotic systems [ J ]. Phys Rev Lett, 1990.64: 821 - 825.
  • 8Hassan K,Khalil.非线性系统[M].朱义胜,董辉,李作洲.译.电子工业出版社,2005.

二级参考文献17

  • 1姜斌,王宏强,黎湘,郭桂蓉.海杂波背景下的目标检测新方法[J].物理学报,2006,55(8):3985-3991. 被引量:22
  • 2李雪霞,冯久超.一种混沌信号的盲分离方法[J].物理学报,2007,56(2):701-706. 被引量:16
  • 3Leung H,IEEE Trans Signal Processing,1996年,44卷,2456页
  • 4Haykin S,Proc IEEE,1995年,83卷,94页
  • 5张贤达,现代信号处理,1995年
  • 6Hammel S M 1990 Phys. Lett. A 148 421.
  • 7Lee C,Williams D B 1997 IEEE Trans. Circ. Syst. 144 501.
  • 8Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057.
  • 9Grassberger P, Hegger R, Kantz H, Shaffrath C, Schreiber T 1993 Chaos 3 127.
  • 10Broomhead D S,Huke J P,Jones R 1995 Physica D 80 413.

共引文献49

同被引文献8

  • 1Leung H. Experimental modeling of electromagnetic scattering from an ocean surface using chaos theory [J].Chaos, Solition and Fractals. 1992, 2:25 - 43.
  • 2Leung H, Huang X P. Parameter estimation in chaotic noise [J]. IEEE Trans. Sig. Proc. 1996, 44(10):2456-2463.
  • 3Pecora L.M., Carroll T.L. Synchronization in chaotic systems [J]. PhysRevLett.1990, 64(8):821 - 825.
  • 4Murali K, Lakshmanan M. Chaos in nonlinear oscillators con- trolling and synchronization. Singapore: World Scientific, 1996.
  • 5Kapitaniak T. Controlling chaos: Theoretical and practical methods in nonlinear dynamics. London: Academic Press, 1996.
  • 6Zhiwen. Zhu, Henry. Leung and Zhen. Ding, Optimal Synchro- nization of Chaotic Systems in Noise, IEEE Trans. Circuits Syst.I, 1999,46(11): 1320-1329.
  • 7陈争,曾以成,付志坚.混沌背景中信号参数估计的新方法[J].物理学报,2008,57(1):46-50. 被引量:15
  • 8李小玲,袁继敏,银星,林宗兵.基于混沌和神经网络的AM调制信号参数检测[J].微计算机信息,2009,25(1):123-125. 被引量:1

引证文献1

相关主题

;
使用帮助 返回顶部