期刊文献+

完全二部图广义Mycielski图的邻点可区别全色数与邻强边色数 被引量:15

On The Adjacent-Vertex-Distinguishing Total Chromatic Number and The Adjacent-Strong-Edge Chromatic Number of General Mycielski Graph of K_(m,n)
原文传递
导出
摘要 得到了完全二部图Km,n的广义Mycielski图Ml(Km,n),当(l≥1,n≥m≥2)时的邻点可区别全色数与邻强边色数. The adjacent vertex distinguishing total chromatic numbers, and the adjacent strong edge chromatic numbers of General Mycielski of complete 2-partite graph Mt (Km,n)(l ≥ 1 ,n≥m≥ 2) he obtained.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第19期147-152,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金项目(10661007 10071091) 甘肃省教委基金项目(0604-05)
关键词 完全二部图 广义MYCIELSKI图 邻点可区别全色数 邻强边色数 complete 2-partite graph general Mycielski graph adjacent-vertex distinguishingtotal coloring adjacent strong-edge coloring
  • 相关文献

参考文献7

  • 1陈义.轮图的广义Mycielski图的邻强边色数[J].经济数学,2003,20(2):77-80. 被引量:3
  • 2Liu Linzhong,Zhang Zhongfu, Wang Jianfang. On the adjacent strong edge coloring of outer plane graphs[J].Mathematics Reserch and Exposition, 2005,25 : 255-266.
  • 3Liu Linzhong, Li Yingzheng, Zhang Zhongfu. On the adjacent strong edge coloring of halin graphs [J]. Mathematics Reserch and Exposition, 2003,23 : 241-246.
  • 4Zhang Zhongfu, et al. The adjacent strong edge chromatic number of graphs[J]. Applied Mathematics Letters, 2002,15:623-626.
  • 5李敬文 张忠辅.一些图的Mycielski图的邻强边色数.兰州交通大学学报,2005,24(3):133-135.
  • 6ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 7Bondy JA, Murty USR. Graph Theory with Applicatives[M]. New York, The Macmillan Press, Ltd,1976.

二级参考文献6

  • 1Chang, G. J., Huang, L. and Zhu, X., Circular chromatic number of Mycielskii's graphs, Discrete Math, 205(1999) ,23--37.
  • 2李敬文.若干图的广义Mycielski图的临强边色数,待发.
  • 3李敬文.若干图的Mycielski图的临强边色数,待发.
  • 4Zhang Zhongfu, Lui Linzhong, and Wang Jianfang, Adjacent strong edge coloring of graphs, Applied Mathematics Letter, 15(2002), 623--626.
  • 5Bondy, A and Murty, U. S. R. , Graph Theory with applications, The Macmillan press Ltd, 1976.
  • 6Bums,A. C,Schelp,R. H.Vertex-distinguishing proper edge-colorings, J[].of Graph Theory.1997

共引文献176

同被引文献48

引证文献15

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部