期刊文献+

基于遗传神经网络的超混沌时间序列预测 被引量:1

Hyperchaotic Time Series Forecast Based on Genetic Neural Networks
下载PDF
导出
摘要 研究了超混沌系统的预测问题。通过分析混沌时间序列,建立具有多个隐节点的3层前馈网络,基于泛化性考虑采用剪枝算法训练,在保证预测精度的基础上消去部分隐节点以降低网络复杂性,利用遗传算法具有的全局寻优能力重新训练网络,利用具有局部寻优能力BP算法再次训练该网络。对Mackey-Glass时滞混沌系统预测实验结果表明,改进算法的泛化性能优于经典BP网络,归一化预测精度提高10倍多,能够较好地解决超混沌系统的预测问题。 This paper studies the forecast of the hyperchaotic system. After analyzing the chaotic time series, a three-layer forward artificial neural network is built up with many notes in the hidden layer. Considering generalization ability of the net, Weight-Elimination(WE) algorithm is adopted to delete some hidden notes for reducing complexity of the net and assure the net forecast precision. Genetic Algorithm(GA) is introduced to train the net over again for its global search ability. And the acquired net is trained again by classical BP arithmetic with its localized search. Experiments on the Mackey-Glass time lag chaos system illustrate that the improved method is better than the classical BP arithmetic, and the normalized forecast precision is enhanced by more than 10 times, so it can resolve the prediction of the super chaotic system.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第20期227-229,共3页 Computer Engineering
关键词 超混沌 神经网络 遗传算法 权消去法 预测 hyperchaos neural networks Genetic Algorithm(GA) Weight-Elimination(WE) forecast
  • 引文网络
  • 相关文献

参考文献5

  • 1张桂英.基于神经网络的混沌时间序列短期预测[J].计算机工程,2002,28(11):197-198. 被引量:5
  • 2Weigend A S, Rumelhart D E, Huberman B A. Back-propagation, Weight-elimination and Time Series Prediction[R]//Proceedings of Connectionist Models Summer School. San Mateo, USA: Morgan Kaufmann, 1990.
  • 3Krogh A, Hertz J A. A Simple Weight Decay Can Improve Generalization[C]//Proc. of Advances in Neural Information Processing Systems. San Matteo, USA: Morgan Kaufmann, 1992.
  • 4Houck C R, Joines J A, Kay M G. A Genetic Algorithm for Function Optimization: A Matlab Implementation. North Carolina State University[EB/OL]. [2007-06-20]. http://www.ie.ncsu.edulmirage/ GATool Box/gaot/gaotv5.zip.
  • 5贺涛,周正欧.基于分形自仿射的混沌时间序列预测[J].物理学报,2007,56(2):693-700. 被引量:25

二级参考文献26

  • 1崔万照,朱长纯,保文星,刘君华.基于模糊模型支持向量机的混沌时间序列预测[J].物理学报,2005,54(7):3009-3018. 被引量:29
  • 2刘晨辉.电力系统负荷预测理论与方法[M].哈尔滨:哈尔滨大学工业出版社,1987..
  • 3Atiya A F, E1-Shoura S M. A Comparison Between Neural-Network Forecasting Techniques-Case Study: River Flow Forecasting. IEEE Trans. on Neural Networks, 1999,10(2):402-409
  • 4Wang Yi-jen, Lin Chin-teng, Runge-Kutta. Neural Network for Identification of Dynamical Systems in High Accuracy. IEEE Trans. on Neural Networks, 1998,9(2):294-307
  • 5Lorenz E N. Deterministic Nonperiod Flow. Journal of Atmospheric Science, 1963, 20:130-141
  • 6Kantz H, Schreiber T 1997 Nonlinear Time Series Analysis (Canada: Cambridge University Press)
  • 7Zhou C, Chen T 1997 Phys, Lett, A 234 429
  • 8Zhang J S, Xiao X C 2000 Chin. Phys. Lett. 17 88
  • 9Chellapilla K, Rao S 1998 IEEE Signal Processing Letters 5 39
  • 10Takens F 1981 Lecture Notes in Mathematics (Berlin: Springer-Verlag) p366

共引文献28

同被引文献10

引证文献1

二级引证文献1

;
使用帮助 返回顶部