期刊文献+

基于商空间粒度理论的大规模SVM分类算法 被引量:8

Large-scale SVM classification algorithm based on granularity of quotient space theory
下载PDF
导出
摘要 利用商空间粒度理论对已有的SVM分类算法进行改进,给出了一种新的SVM分类算法——SVM-G。该算法将SVM分类问题划分成两个或多个子问题,从而降低了SVM分类复杂度。实验表明,改进的算法适用于处理大数据量的样本,能在保持分类精度的情况下有效地提高支持向量机的学习和分类速度。 This paper improved the existing SVM algorithm with the granularity of the quotient space theory, proposed a new SVM algorithm(SVM-G). The improved algorithm divided SVM classification problem into two or more sub-issues, thereby re- ducing the computation complexity of SVM classification. Experimental results indicate that the improved algorithm is suitable for processing large number of observations and can effectively accelerate the speeds of SVM learning and classifying while keeping the classification precision.
出处 《计算机应用研究》 CSCD 北大核心 2008年第8期2299-2301,共3页 Application Research of Computers
基金 广东省科技攻关资助项目(2007B030803006)
关键词 粒度 商空间 支持向量机 分类 机器学习 granularity quotient space SVM ( support vector machine) classification machine learning
  • 相关文献

参考文献10

  • 1YAO Y Y,ZHONG Ning.Potential applications of granular computing in knowledge discovery and data mining[C]//Proc of World Multi-Conference on Systemics,Cybernetics and Informatics.[S.l.]:Computer Science and Engineering,1999:573-580.
  • 2张燕平,张铃,吴涛.不同粒度世界的描述法——商空间法[J].计算机学报,2004,27(3):328-333. 被引量:80
  • 3高平安,蒙祖强,蔡自兴.基于粒度计算的数据分类建模研究[J].计算机应用研究,2007,24(3):37-40. 被引量:2
  • 4卜东波,白硕,李国杰.聚类/分类中的粒度原理[J].计算机学报,2002,25(8):810-816. 被引量:95
  • 5VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 6VAPNIK V,GOLOWICH S,SMOLA A.Support vector method for function approximate,regression estimation,and signal processing[M].Cambridge:MIT Press,1997:281-287.
  • 7OSUNA E,FREUND R,GIRROSI F.Improved training algorithm for support vector machines[C]//PRINCIPLE J,GILES L,MONGAN N,et al.Proc of IEEE Workshop on Neural Networks and Signal Processing.Amelia Island:IEEE Press,1997:276-285.
  • 8PLATT J C.Fast training of support vector machines using sequential minimal optimization[M]// SCHOLKOPF B,BURGES C J C,SMOLA A J.Advances in kernel methods:support vector learning.Cambridge:MIT Press,1999:185-208.
  • 9ASUNCION A,NWEMAN D J.UCI machine learning repository[D].California:Department of Information and Computer Science,University of California,2007.
  • 10CHANG C C,LIN C J.LIBSVM:a library for support vector machines[EB/OL].(2006-11-17)[2007-01-07].http://www.csie.ntu.edu.tw/cjlin/libsvm.

二级参考文献13

  • 1蒙祖强,蔡自兴.个性化决策规则的发现:一种基于Rough Set的方法[J].控制与决策,2004,19(9):994-998. 被引量:10
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3苗夺谦.Rough Set理论在机器学习中的应用研究:博士学位论文[M].北京:中国科学院自动化研究所,1997..
  • 4Vapnik V N.统计学习理论的本质(中文版)[M].北京:清华大学出版社,2000..
  • 5黄萱菁.大规模中文文本的检索、分类与摘要研究:博士学位论文[M].上海:复旦大学,1998..
  • 6邵健.基于Rough Sets的信息粒度计算及其应用:硕士学位论文[M].北京:中国科学院自动化研究所,2000..
  • 7YAO Y Y, ZHONG N, Potential applications of granular computing in knowledge discovery and data mining: proceedings of World Multiconference on Systemics, Cybernetics and Informatics [ C ], [ S, 1, ]:Computer Science and Engineering, 1999 : 573 - 580.
  • 8MENG Zuqiang, CAI Zixing. Discovery of personalized knowledge based on rough set theory : proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing,Changsha, China, October, 2003 [ C ]. [ S. 1. ] : [ s. n, ], 2003 : 1322-1327.
  • 9YAO Y Y, On modeling data mining with granular computing: the 25th Annual International Computer Software and Applications Conference (COMPSAC' 01 ), Chicago, Illinois, October 8-12, 2001[ C ]. Alamitos' CA : IEEE Computer Society,2001:638-643.
  • 10王珏,王任,苗夺谦,郭萌,阮永韶,袁小红,赵凯.基于Rough Set理论的“数据浓缩”[J].计算机学报,1998,21(5):393-400. 被引量:239

共引文献171

同被引文献121

引证文献8

二级引证文献1032

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部