期刊文献+

相关激励作用下随机结构振动响应的统计分析 被引量:4

Statistical analysis of vibrational response of uncertain dynamics structures based on correlated excitations
下载PDF
导出
摘要 应用随机过程理论,以能量为变量,分析了随机结构振动响应的统计特性。结构受相关激励作用时,通过输入激励的解相关方法,将作用在结构上的相关激励转变为各个不相关激励的作用;分析结构的振动响应的统计特性时,计及响应特征频率的相关性,在响应特征频率满足高斯正交总体的假设下,推导出了随机结构振动响应分析的统计分析表达式。应用设计的实验件和试验验证了所提出的统计分析的正确性,通过和已存在的统计分析结果的比较,表明了统计分析具有更高的分析精度,能够定性和定量的给出随机结构振动响应的统计变化情况。 The statistical characteristics of vibrational response to uncertain dynamic structures were analyzed in this paper, by applying random process theory, and taking energy as variables. Via the decoupling correlation method of the input excitation, which based on proper orthogonal decomposition, the correlative excitations were translated into statistically independent excitations. The relativity of eigenfrequency in structural response was counted in when analyzing the statistical characteristics of vibrational response to uncertain dynamic structures. The calculative expression of vibrational response to uncertain dynamic structures was proposed in the paper. Experimental sample was designed to validate the correctness of the method. It shows that: compared with the existent result, the proposed statistical analysis method is of more accuracy, and it can qualitatively and quantitatively present the statistical characteristics of vibrational response to uncertain dynamic structures.
出处 《振动工程学报》 EI CSCD 北大核心 2008年第5期429-435,共7页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50675099) 江苏省自然科学基金资助项目(BK2007197)
关键词 随机结构 相关激励 统计分析 本征正交分解 统计能量分析 uncertain dynamics structures correlated excitations statistical analysis proper orthogonal decomposition statistical energy analysis
  • 相关文献

参考文献17

  • 1廖庆斌,李舜酩.统计能量分析中的响应统计估计及其研究进展[J].力学进展,2007,37(3):337-345. 被引量:10
  • 2Lyon R H, Dejong R G. Theory and Application of Statistical Energy Analysis[M]. 2nd Ed. Boston: Butterworth-Heinemann, 1995.
  • 3Langley R S. A non-Poisson model for the vibration analysis of uncertain dynamic systems[J]. Proceedings of Royal Society of London Series A, 1999, 455 (1989): 3 325-3 349.
  • 4Kompella M S, Bernhard B J. Measurement of the statistical variation of structural-acoustic characteristics of automotive vehicles[R]. SAE Paper, 931272, 1993.
  • 5Manning J E. Variance and confidence intervals for SEA predictions [R]. SAE Paper, 2005-01-2432, 2005.
  • 6Langley R S, Brown A W. The ensemble statistics of the energy of a random system subjected to harmonic excitation[J].Journal of Sound and Vibration, 2004, 275(3-5) : 823-846.
  • 7Lyon R H. Statistical analysis of power injection and response in structures and rooms[J]. The Journal of the Acoustical Society of America, 1969, 45 (3): 545-565.
  • 8Weaver R L. On the ensemble variance of reverberation room transmission functions, the effect of spectral rigidity [J]. Journal of Sound and Vibration, 1989, 130(3): 487-491.
  • 9Legresley P A, Alonso J J. Airfoil design optimization using reduced order models based on proper orthogohal decomposition[R]. AIAA Paper, 2000-2545. 2000.
  • 10赵松原,黄明恪.POD降阶算法中对基模态表达的改进[J].南京航空航天大学学报,2006,38(2):131-135. 被引量:7

二级参考文献14

共引文献16

同被引文献87

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部