期刊文献+

汽车用爪极发电机的电磁建模及参数优化技术 被引量:11

Electromagnetic Modeling and Parameter Optimization of Claw-Pole Alternator for Automobile Application
下载PDF
导出
摘要 针对现在汽车上广泛应用的爪极发电机运行效率低的问题,利用电机三维有限元分析找出其效率低的主要原因是存在严重的漏磁现象。通过优化爪极发电机的结构参数达到最小化漏磁从而间接地达到提高电机效率的目的是本文研究的出发点。爪极发电机结构参数优化需要进行大规模的迭代计算,为了降低优化计算的成本,引入了基于支持向量机非参数建模思想,非参数模型和智能优化算法的运用达到了最小化爪极发电机漏磁的目的,试验结果验证了理论分析的正确性。 A practical status is inefficient when the claw-pole alternator is widely used in automobile application, and the serve leakage is the main cause of it according to analyzing results by the three dimensional (3D) finite element (FE). Minimizing leakage by optimizing structure parameters, so the efficiency enhanced indirectly is the objective of this paper. Optimizing structure parameters of the claw-pole alternator need large-scale iterative calculation, so nonparametric modeling is introduced for debasing the calculation cost. The purpose of minimizing leakage is gained by using nonparametric model and intelligent optimal arithmetic, and the correctness of the theoretic analysis is validated by the exoerimental results.
出处 《电工技术学报》 EI CSCD 北大核心 2008年第10期23-27,共5页 Transactions of China Electrotechnical Society
基金 国家自然科学基金(50077005) 合肥工业大学科学研究发展基金(060401F)资助项目。
关键词 爪极发电机 效率 漏磁 非参数建模 优化 Claw-pole alternator, efficiency, leakage, nonparametric modeling, optimization
  • 相关文献

参考文献10

二级参考文献62

  • 1Kennedy J, EberhartR. Particle swarm optimization[A]. Proceedings of IEEE Conference on Neural Networks[C]. Perth, Australia, 1995,4: 1942-1948.
  • 2Sensarma P S, Rahmani M. A comprehensive method for optimal expansion planning using particle swarm optimization [A]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference[C]. NewYork, USA, 2002: 1317-1322.
  • 3Chin Aik Koay, Dipti Srinivasan. Particle swarm optimization-based approach for generator maintenance scheduling[A]. Proceedings of the IEEE Swarm Intelligence Symposium 2003[C]. Indiana, USA, 2003:167-173.
  • 4Zwe-Lee Gaing. Discrete particle swarm optimization algorithm for unit commitment[A]. IEEE Power Engineering Society General Meeting[C]. Ontario, Canada, 2003: 418-424.
  • 5E1-Gallad A, El-Hawary M. Particle swarm optimizer for constrained economic dispatch with prohibited operating zones[A]. Canadian Conference on Electrical and Computer Engineering[C]. Manitoba,Canada, 2002: 78-81.
  • 6Jong-Bae park, Ki-Song Lee. Economic load dispatch for non-smooth cost functions using particle swarm optimization[A]. IEEE Power Engineering Society General Meeting[C]. Ontario, Canada, 2003:938-943.
  • 7Zwe-Lee Gaing. Particle swarm optimization to solving the econonmic dispatch considering the generator constraints[J]. IEEE Trans on Power Systems, 2003, 18(3): 1187-1195.
  • 8Pancholi R K, Swamp K S. Particle swarm optimization for economic dispatch with line flow and voltage constraints[A]. Conference on Convergent Technologies for the Asia-Pacific Region[C]. Bangalore,India, 2003, 1: 450-455.
  • 9Kumar A I S, Dhanushkodi K. Particle swarm optimization solution to emission and economic dispatch problem[A]. Conference on Convergent Technologies for the Asia-Pacific Region[C]. Bangalore,India, 2003, 1: 435-439.
  • 10Zhang W, Liu Y. An adaptive PSO algorithm for reactive power optinfization[A]. Advances in Power System Control Operation and Management, S6-Application of Artificial Interlligence Technique[C]. HongKong, China, 2003: 1534-1538.

共引文献2736

同被引文献66

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部