期刊文献+

基于蚁群优化和遗传操作的混合方法

A Hybrid Approach Based on Ants Colony Optimization(ACO) and Genetic Operators
下载PDF
导出
摘要 尽管蚁群优化算法(ACO)在优化计算中已得到了很多应用,但在进行大规模优化时,其收敛时间过长仍是应用该算法的一个瓶颈.为了确保资源利用完成时间最小化和完成用户指定的最终期限延迟最小化,找到一个优化的调度方法,在计算网格中针对资源分配和调度提出了基于蚁群优化和遗传操作的混合方法. Despite the numerous applications of ACO(ant colony optimization)algorithm in optimization computation, it remains a computational bottleneck that the ACO algorithm costs too much time in order to find an optimal solution for large-scaled optimization problems. The objective is to find an optimal schedule which will minimize the makespan so as to ensure the proper utilization of the resources and minimize.the delay in achieving user specified deadlines. A hybrid approach based on ACO and Genetic operators is proposed for resource allocation and scheduling in computational grids.
作者 李盛欣
出处 《湘南学院学报》 2008年第5期71-74,共4页 Journal of Xiangnan University
基金 湖南省教育厅科研项目资助(07C72)
关键词 网格调度 计算网格 遗传操作 蚁群优化 grid scheduling computational grids genetic operators ants colony optimization
  • 相关文献

参考文献12

  • 1I Foster, C Kesselman, Computational Grids. The Grid: Blueprint for a New Computing Infrastructure[ M]. Morgan- Kaufman, San Fransisco, 1998.
  • 2A Abraham, R Buyya and B Nath. Nature's Heuristics for Scheduling Jobs on Computational Grids[ M]. The 8th IEEE International Conference on Advanced Computing and Communications(ADCOM 2000), India, 2000.
  • 3D Wright. Cheap Cycles from the Desktop to the Dedicated Cluster: Combining Opportunistic and Dedicated Scheduling with Condor[ M ]. Proceeding of HPCRevolu - tion 01, Illinois, 2001.
  • 4M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Trans. Evolutionary Computation, 1997, 1 ( 1 ) :53 - 66.
  • 5D Schrage, P G Gonsalves. Sensor scheduling usingant colony optimization[J]. Proc. of the Sixth International Conference of Information Fusion, 2003,1 ( 1 ) : 379 - 385.
  • 6Youmei Li, Zongben Xul. An ant colony optimization heuristic for solving maximum independentset problems[J]. Proc. of Computational Intelligence and Multimedia Applications, 2003,206 - 211.
  • 7H Kasahara, S Narita. Practical multiprocessing scheduling algorithms for effi - cient parallel processing[J]. IEEE Transactions on Computers, 198d,33(11):1023- 1029.
  • 8J H Holl and Adaptation in Natural and Artificial Systems[ M]. MIT Press, Cambridge, MA,USA, 1992.
  • 9J Levine and F Ducatelle. Ant colony optimization and local search for bin packing and cutting stocproblems[ M]. Journal of the Operational Research Society. 2003.
  • 10G Ritchie. Static multi- processor scheduling with ant colony optimisation and local search[ M]. Master's thesis, University of Edinburgh. 2003.

二级参考文献7

  • 1康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 2Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 3Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 4康立山,非数值并行算法.1 模拟退火算法,1997年
  • 5Daniel Costa,Alain Hertz,Clivier Dubuis. Embedding a sequential procedure within an evolutionary algorithm for coloring problems in graphs[J] 1995,Journal of Heuristics(1):105~128
  • 6吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:307
  • 7张素兵,吕国英,刘泽民,周正.基于蚂蚁算法的QoS路由调度方法[J].电路与系统学报,2000,5(1):1-5. 被引量:35

共引文献506

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部