摘要
研究具有滞后非线性的单自由度汽车悬架在路面随机激励作用下发生混沌运动的可能性,利用M eln ikov方法给出发生混沌运动的临界条件,讨论非线性度系数k2和非线性刚度系数c1、c2等各参数对系统出现混沌的影响.进行数值仿真,给出时间历程曲线、自功率谱密度图形、Poincare截面等,并计算最大Lyapunov指数和关联维数.研究结果表明,汽车悬架振动信号能够进入混沌状态,为进行汽车悬架振动信号的混沌特征参数计算和对汽车悬架隔振性能进行混沌评价提供了理论依据.
This paper attempts to investigate the possibility of chaotic motion happened to single-degree-of-freedom, hysteric nonlinear automobile suspension under the action of road random excitation. Melnikov function was employed to work out the critical condition on which chaotic motion tended to take place. Then the influences of such parameters as nonlinear coefficient k2, and nonlinear stiffness coefficients c1 and c2 on occurrences of chaotic motion were examined. Numerical simulation was carried out to calculate time history curve, PSD figures and Poincare map, along with the largest Lyapunov exponent and correlation dimension. The results showed that vibration signal of automobile suspension is able to come into chaotic motion, thereby providing theoretical basis upon which chaotic characteristic parameters of automobile suspension vibration signals can be calculated and chaotic estimation concerning vibration isolation performance of automobile suspen- sion can be evaluated.
出处
《南京工程学院学报(自然科学版)》
2008年第3期18-22,共5页
Journal of Nanjing Institute of Technology(Natural Science Edition)
基金
江苏省高校自然科学基础研究项目(07KJD580084)
南京工程学院科研基金项目(KXJ07047
KXJ07066)
关键词
汽车悬架
混沌特性
随机激励
automobile suspension
chaotic characteristics
random excitation