期刊文献+

基于粗糙集和支持向量机的融合算法在岩体质量评价中的应用 被引量:14

Application of data fusion in evaluation of engineering quality of rock mass based on rough sets and support vector machine
下载PDF
导出
摘要 从数据融合角度出发,把粗糙集理论和支持向量机理论结合,用来解决隧道岩体质量评价问题。首先,应用粗糙集理论对岩体质量评价样本数据进行约简,去除冗余特征形成岩体质量影响因素与岩体质量之间简明扼要的关系数据表达形式,形成新的样本数据,然后应用支持向量机理论,对新样本数据进行学习,建立岩体质量的支持向量机评价模型。通过实际工程应用表明,该方法科学可行。 Based on data fusion the method which combines the rough sets theory and the support vector machine theory is applied in assessment of engineering quality of rock mass. Firstly, applying the rough sets theory the sample data is reduced. Removing the redundant characteristics, the concise expression can be formed expressing the relation of the factors and the engineering quality of rock mass, and new sample data be formed. Then applying the support vector machine study the new sample data to establish the support vector machine evaluation model. Through application in the example, it indicates that the model is scientific and practical, and support vector ma- chine is a feasible method in the evaluation of tunnel rock quality.
出处 《煤田地质与勘探》 CAS CSCD 北大核心 2008年第6期49-53,共5页 Coal Geology & Exploration
基金 国家自然科学基金项目(40472136) 教育部归国人员启动基金项目(120413133) 吉林大学“985”计划项目(105213200500007)
关键词 数据融合 粗糙集 支持向量机 岩体质量 data fusion rough sets support sector machine engineering quality of rock mass
  • 相关文献

参考文献6

二级参考文献28

  • 1陈守煜.模糊最优归类理论模型及其在围岩稳定性分类与场地土类别评定中的应用[J].水利学报,1993,25(12):26-36. 被引量:37
  • 2蔡文.可拓集合和不相容问题[J].科学探索学报,1983,(1).
  • 3郭开仲.关联函数的形式[J].智囊与物元分析,1985,(1).
  • 4冯夏庭, 张奇志, 林韵梅. 矿岩设计参数神经网络预报[A], 中国岩石力学与工程学会第三次大会论文集[C], 北京:中国科学技术出版社, 1994.
  • 5Burge CJC.A Tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery, 1998, (2): 121-167.
  • 6John C Platt.Sequential minimal optimization: A fast algorithm for training support vector machines[R], Technical Report MSR-TR-98-14, Redmond, Wash: Microsoft research, 1998.
  • 7Waltz E, Llinas J. Multisensor Data Fusion. Norwood, USA : Artech House, 1990.
  • 8Hall D L, McMullen S A H. Mathematical Techniques in Multi-sensor Data Fusion. New York, USA:Artech House, 1992.
  • 9Pawlak Z. Rough Sets Theoretical Aspects of Reasoning about Data. Dordrecht, Netherlands: Kluwer Academic Publishers,1991, 68-162.
  • 10Cortes C,Vapnik V. Support-Vector Networks. Machine Learning, 1995, 20(3): 273-297.

共引文献187

同被引文献213

引证文献14

二级引证文献220

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部