摘要
为使读者比较全面地了解介质阻挡放电,根据气体放电理论和实验结果,对介质阻挡放电进行了综述。首先提出了只有拍摄曝光时间为10 ns左右的放电图像才能判断放电是否为均匀放电,即使是均匀放电,也不能统称其为大气压辉光放电,还必须进一步区分它是辉光放电还是汤森放电。其次,说明了只有增加放电的种子电子,使放电在低电场下进行才有可能实现大气压下均匀放电。最后,根据放电图像、电流电压波形、数值模拟结果,证明了大气压氦气均匀放电为辉光放电,而大气压氮气均匀放电为汤森放电。最后还简要介绍了3种介质阻挡放电的主要工业化应用—大型臭氧发生器、薄膜表面的流水线处理、等离子体显示屏。
In order to comprehensively understand DBD, we reviewed the investigations of dielectric barrier discharge (DBD) by focusing on the physics related to the uniform discharge at atmospheric pressure. It is suggested that the best way to distinguish a uniform discharge from a filamentary one is to take a picture with an exposure time of about 10 ns. Even for a real uniform discharge, it is important to further distinguish a glow discharge frQm a Townsend discharge. The only way to get a uniform discharge at atmospheric pressure is to make the discharge at a lower electric field by increasing the seed electrons initiating the discharge. Recently, the uniform discharges at atmospheric pressure have been obtained in helium and nitrogen, i. e. , subnormal glow discharge in helium and Townsend discharge in nitrogen. Moreover, we briefly introduced three industrial applications of DBD plasmas, including the advanced ozone generator, continuous double-sided treatment of foil surface, plasma display panel.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2009年第1期1-11,共11页
High Voltage Engineering
基金
国家自然科学基金重点项目(50537020)
博士点专项基金项目(20040003011)~~
关键词
介质阻挡放电
大气压辉光放电
汤森放电
辉光放电
气体放电
等离子体表面处理
dielectric barrier discharge
atmospheric pressure glow discharge
Townsend discharge
glow discharge
gas discharge
plasma surface modification