期刊文献+

中型组足球机器人全向视觉定位技术 被引量:2

Omni-vision based localization for middle-size soccer robot
下载PDF
导出
摘要 自定位是移动机器人正常工作所必须具备的能力。综述了RoboCup中型组足球机器人比赛中机器人的基于视觉定位技术,包括机器人自定位技术和多机器人协作物体定位技术,并对这些定位方法特点进行了分析探讨。首先介绍算法相对简单且应用广泛的基于路标的几何定位法;其次分析基于贝叶斯滤波的概率定位方法,它融合了多传感器信息,能够达到较好的定位性能;最后探讨了多机器人协作物体的定位方法。最后对机器人视觉定位的发展趋势进行了展望。 Serf-localization is a vital ability for mobile robot's normal operations. The paper summarizes the vision-based localization approaches for autonomous mobile robots in RoboCup competition, including the self- localization and coordinated multi-robot object localization, and the performance of those localization methods is analyzed and compared. Firstly, the geometric localization approach based on road-mark is introduced, it is simple in theory and has been applied abroad; secondly, the probability-based localization based on Bayesian filter is presented, which can arrive better localization performance by combining multi-sensor data; then, the coordinated multi-robot object localization technology is studied; finally, the trend of research of the vision- based localization method is discussed.
出处 《信息技术》 2009年第1期5-9,共5页 Information Technology
基金 河南省杰出人才基金项目(20030290019) 河南理工大学博士基金资助项目(648163)
关键词 移动机器人 视觉定位 贝叶斯滤波 概率定位 mobile robots vision-based localization Bayesian filter probabilistic localization
  • 相关文献

参考文献24

  • 1雷亚丽.基于概率方法的机器人定位[D].东北电力大学工学硕士学传论文,2007.
  • 2ANTONIO, MUNOZ J. Two-dimensional landmark-based position estimation from a single image[ C]//Proc 1998 IEEE lnt Conf on Robotics & Automation. Bellglum: IEEE Press, 1998:3709 - 3714.
  • 3PLAGGE M,ZRIJ, A. Vision-based goalkeeper localization[EB/OL]. http://citeseer. 1st. Psu. edu/plagge00vision, html, Aprill, 2003.
  • 4Motomura A, Matsuoka T, Hasegawa T. Self-localization method using two landmarks and dead reckoning for autonomous mobile soccer robots [ C]. RoboCup 2003 Symposium. Heidelborg: Springer-Verlag, 2003 :526 - 533.
  • 5王景川,陈卫东,曹其新.基于全景视觉与里程计的移动机器人自定位方法研究[J].机器人,2005,27(1):41-45. 被引量:23
  • 6FOX D, BURGARD W,THRUN S. Markov Locatization for Mobile Robots in Dynamic Environments[J]. Journal of Artificial Intelligence Research, 1999( 11 ) : 391 - 427.
  • 7Fox D, Burgard W. Active Markov Localization for Mobile Robots[J]. Robotics and Autonomous Systems, 1998,25( 1 ) : 195 - 207.
  • 8吴庆祥,Bell David.可移动机器人的马尔可夫自定位算法研究[J].自动化学报,2003,29(1):154-160. 被引量:15
  • 9Gulmann J. Markov-Kalman Localization for Mobile Robots[C]. Proc of Int Conf on Pattem Recognition ( ICPR' 02 ). Quebec: IEEE CSPress, 2002:601 -604.
  • 10FOX D. KLD-Sampling:Adaptive particle filters and mobile robot localization[ Z]. TR-UW-CSE-O1-08-02. 2001.

二级参考文献57

  • 1Moreno L, Armingol J, Escalera A, et al. Global integration of ultrasonic sensors information in mobile robot localization [ A ]. Proceedings of the Ninth International Conference on Advanced Robotics [ C ].Tokyo, Japan: 1999. 283-288.
  • 2Fox D, Burgard W, Kruppa H, et al. Collaborative multi-robot localization[ A]. Proceedings of the German Conference on Artificial Intelligence (KI) [ C]. Bonn, Germany: 1999.15 - 26.
  • 3Ashley W, Martin C, Balch T. Merging Probabilistic Observations for Mobile Distributed Sensing[ R]. USA: Carnegie Mellon University,2000.
  • 4Weber J, Franken L, Jorg K, et al. An integrative framework forglobal self-localization[A]. Proceedings of the IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)[C]. Baden-Baden, Germany: 2001.73-78.
  • 5Chong K, Kleeman L. Accurate odometry and error modelling for a mobile robot[ A]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ]. Albuquerque, USA: 1997, Vol. 4. 2783 -2788.
  • 6Borenstein J, Feng L. UMBmark - a method for measuring, compa ring, and correcting dead-reckoning errors in mobile robots [ R ]. USA: University of Michigan, 1994.
  • 7Crowley J L. Control of displacements and rotation in a robotvehicle [A]. Proceedings of the IEEE International Conference on Robotics and Automation[ C]. Scottsdale AZ, USA: 1989. 674 -680.
  • 8Motomura A, Matsuoka T, Hasegawa T. Self-localization method using two landmarks and dead reckoning for autonomous mobile soccer robots [ A ]. Proceedings of the RoboCup 2003 Symposium [ C ].Padova, Italy: 2003. 526 - 533.
  • 9Ashley W, Martin C, Balch T. Distributed sensor fusion for object position estimation by multi-robot systems [ A ]. Proceedings of the IEEE International Conference on Robotics and Automation[ C]. Seoul, Korea: 2001, Vol. 2, 1092-1098.
  • 10BORENSTEIN J, EVERETT H R, FENG L. "Where am I?" sensors and methods for autonomous mobile robot positioning[M]. Wellesley. Mass.:AK Peters, 1996.

共引文献48

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部