期刊文献+

复数Hopfield盲恢复多用户QPSK信号 被引量:7

Blind recovery of multiuser QPSK with complex Hopfield network
下载PDF
导出
摘要 为盲恢复MIMO系统QPSK信号,构造了一个专门的复数Hopfield神经网络(CHNN).证明了CHNN趋向平衡的充要条件,指出了虚、实部同时平衡是极值点的必要条件,给出了平衡点集大小与连接矩阵主对角元大小之间的关联.此外,为准确地串行恢复多用户信号,提出了新的补空间扩展法.计算机仿真表明,该CHNN所采用的连接矩阵和补子空间扩展法能有效地削减平衡点数,减少神经网计算次数,降低用户信号漏检的错误. A complex Hopfield neural network (CHNN) with a special connective matrix is constructed to blindly recover QPSK (quadriphase-shift keying) signals of MIMO (multiple-input multiple-output) systems. A necessary and sufficient condition of the CHNN equilibrium is also proposed, which indicates that an equilibrium point is a likely minimal point only if both of the real part and imaginary part of CHNN states reach equilibrium synchronously, and it is shown that diagonal elements of the CHNN connective matrix have an effect on the number of equilibrium points. In addition, a new method of a complementary subspace extension is presented to accurately recover multiuser signals in serial. Computer simulations show that the special connective matrix is helpful to reduce .the number of equilibrium points and computation cost, and the new method of a complementary subspace extension is beneficial to decrease detection miss of multiuser signals.
作者 张志涌 张昀
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第A02期18-22,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60772060) 南京邮电大学校攀登项目(NY207056)
关键词 复数Hopfield神经网络 盲恢复 QPSK信号 MIMO complex Hopfield neural network blind recovery QPSK (quadriphase-shift keying) MIMO ( multiple-input multiple-output)
  • 相关文献

参考文献6

  • 1Ding Z, Li Y. Blind equalization and identification[M]. New York: Marcel Dekker, 2002.
  • 2Giannakis G B, Hua Y B, Stoica P, et al. Signal processing advances in wireless and mobile communications, vol. 1 : Trends in channel estimation and equalization[M].北京:人民邮电出版社,2002.
  • 3张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 4Bai Er-Wei, Li Qingyu, Zhang Zhiyong. Blind source separation/channel equalization of nonlinear channels with binary inputs [J ]. IEEE Trans Signal Processing, 2005,53 ( 7 ) : 2315 - 2323.
  • 5You C, Hong D. Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[J ].IEEE Trans Neural Networks, 1998, 9(6) : 1442- 1455.
  • 6Zhang X, Li L, Zhuo D, et al. A blind channel equalization algorithm based on feed forward neural network signal processing[C]//Proc ICSP. Beijing, China, 2004, 1 : 335 -338.

二级参考文献11

  • 1L Tong,G Xu,T Kailath.Blind channel identification and equaliztion using second-order statistics:a time-domain approach[J].IEEE Trans Inform.Theory,1994,40(3):340-349.
  • 2E Moulines,P Duhamel,J F Cardoso,S Mayrargue.Subspace methods for the blind indentification of multichannel FIR filters[J].IEEE Trans Signal Processing,1995,43(2):516-525.
  • 3D Slock.Blind fractionally-spaced equalization,perfect-reconstruction filter banks and multichannel linear prediction[A].Proc.1994 IEEE ICASSP[C].1994.4.585-588.
  • 4Z Ding.Matrix outer-product decomposition method for blind multiple channel identification[J].IEEE Trans on Signal Processing,1997,45(12):3054-3061.
  • 5G B Giannakis,C Tepedelenlioglu.Direct blind equalizers of mulitple FIR channel:a deterministic approach[J].IEEE Trans on Signal Processing,1999,47(1):62-74.
  • 6X H Li,H Fan.Linear prediction methods for blind fractionally spaced equalization[J].IEEE Trans Signal Processing,2000,48(6):1667-1675.
  • 7Z Ding,Y Li.Blind Equalization and Identification[M].New York:Marcel Dekker,2000.175-202.
  • 8Z Ding,Li Qiu.Blind MIMO channel identification from second order statistics using rank deficient channel convolution matrix[J].IEEE Trans Signal Processing,2003,51(2):535-544.
  • 9Y Y Ye.Approximating quadratic programming with bound and quadratic constraints[J].Math Program,1999.219-226.
  • 10Q Y Li,E W Bai,Y Y Ye.Channel equalization and ε-approximation algorithms[J].IEEE Trans Signal Processing,2001,49(11):2823-2831.

共引文献22

同被引文献61

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部