期刊文献+

域F_2上线性码的广义Rosenbloom-Tsfasman重量 被引量:2

Generalized Rosenbloom-Tsfasman weights for linear codes over F_2
下载PDF
导出
摘要 受广义Hamming重量的启发,文章将极小RT重量看成是一个线性码的一维子码的一个极小性质,获得了一个高维RT重量的概念,它是广义Hamming重量的推广;得到了该广义重量的基本性质以及一些常见类型线性码关于该重量的值。 In light of the generalized Hamming weight, the minimum RT weight is viewed as a certain minimum property of one-dimensional subeodes, and a generalized notion of higher-dimensional RT weights is obtained,which is a generalization of generalized Hamming weights. Basic properties of the generalized weights are derived, and the values of these weights for well-known classes of codes are determined too.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期278-281,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60673074) 教育部科学技术研究重点资助项目(107065)
关键词 线性码 Rosenbloom-Tsfasman重量 广义Rosenbloom-Tsfasman重量 linear code Rosenbloom-Tsfasman (RT)weight generalized Rosenbloom-Tsfasman weight
  • 相关文献

参考文献9

  • 1Wei V K. Generalized Hamming weights for linear codes [J]. IEEE Trans Inform Theory, 1991, 37 (5): 1412-1418.
  • 2Helleseth T, Klove T, Ytrehus O. Generalized Hamming weights of linear codes [J]. IEEE Trans Inform Theory, 1992, 38(3): 1133-1140.
  • 3Feng G L, Tzeng K K, Wei V K. On the generalized Hamming weights of several classes of cyclic codes [J]. IEEE Trans Inform Theory, 1992, 38(3) : 1125-1130.
  • 4Wei V K, Yang K. The generalized Hamming weights for product codes [J]. IEEE Trans Inform Theory, 1993, 39 (5): 1709-1713.
  • 5Heijnen P, Pellikaan R. Generalized Hamming weights of q-ary Reed-Muller codes [J]. IEEE Trans Inform Theory, 1998, 44(1): 181-196.
  • 6Rosenbloom M Y, Tsfasman M A. Codes for the m-metric [J]. Problems of Information Transmission, 1997, 33 (1) : 45-52.
  • 7Dougherty S T, Skriganov M M. MacWilliams duality and the Rosenbloom-Tsfasman metric [J]. Moscow Mathematical Journal, 2002, 2 (1): 83-99.
  • 8Ozen M, Slap I. Codes over Galois rings with respect to the Rosenbloom-Tsfasman metric [J]. Journal of the Franklin Institute, 2007,344(5) :790-799.
  • 9Siap I. A MacWilliams type identity [J]. Turk J Math, 2002, 26: 465-473.

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部