期刊文献+

分数阶控制器与整数阶控制器仿真研究 被引量:29

Simulation Research on Fractional Order Controllers with Integer Order Controllers
下载PDF
导出
摘要 分数阶PID控制器多了两个可调参数,可以取得更好的控制效果.针对位置伺服系统测试问题,设计了分数阶PID控制器,并与整数阶PID控制器相比较,仿真结果演示了分数阶PID控制器的控制效果明显优于最好的整数阶PID控制器.无论是在输入发生变化,还是系统负载或参数变化,给出的分数阶PID控制器的控制效果都是比较稳定的. Due to the extra tuning knobs, fractional order PID controllers are expected that better control performance can be achieved. The fractional order PID controllers were designed for a benchmark of servomechanism, comparing the best integer order PID controllers. Simulations demonstrate that the behavior of fractional order PID controller is much better than the best integer order PID controllers, in transient responses as well as disturbance rejection.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第3期768-771,775,共5页 Journal of System Simulation
关键词 分数阶微积分 分数阶系统 分数阶PID控制器 仿真 fractional order calculus fractional order systems fractional order PID controllers simulation
  • 相关文献

参考文献12

  • 1薛定宇,赵春娜,潘峰.基于框图的分数阶非线性系统仿真方法及应用[J].系统仿真学报,2006,18(9):2405-2408. 被引量:28
  • 2曾庆山,曹广益,王振滨.分数阶PI^λD^μ控制器的仿真研究[J].系统仿真学报,2004,16(3):465-469. 被引量:36
  • 3Manabe S. Early development of fractional order control [C]//ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago. New York, NY, USA: American Society of Mechanical Engineers, 2003: 12-18.
  • 4Ho W K, Lim K W, Xu W. Optimal gain and phase margin tuning for pid controUers [J]. Automatica (S0005-1098), 1998, 34(8): 1009-1014.
  • 5Lv Z F. Time-domain simulation and design of siso feedback control systems [D]. Taiwan, China: National Cheng Kung University, 2004.
  • 6王振滨,曹广益.分数阶动态系统的数值算法[J].系统仿真学报,2004,16(3):477-479. 被引量:8
  • 7Monje C A, Vinagre B M, Chen Y Q, Feliu V. Some tuning rules for PI^λ controllers robust to gain or time constant changes [J]. Nonlinear Dynamics (S0924-090X), 2004, 38: 369-381.
  • 8Podlubny I, Petras I, Vinagre B M, Chen Y Q, O'Leary P, Dorcak. L.Realization of fractional order controllers[J]. Acta Montanistica Slovaca (S1335-1788), 2003, 8(4): 233-235.
  • 9Vinagre B M, Petras I, Podlubny I, Chen Y Q. Using fractional order adjustment rules and fractional order reference models in modelreference adaptive control [J]. Nonlinear Dynamics (S0924-090X), 2002, 29: 269-279.
  • 10Chen Y O. Moore K L, Vinagre B M, Podlubny I. Robust PID controller autotuning with a phase shaper [K]. Augsburg, Germany: UBooks, 2005: 687-706.

二级参考文献8

  • 1池田 川田 小口.分数次微分方程式のrg甏黏问算法[J].y自又朴学会文集,2001,37(8):795-797.
  • 2Podlubny I. Fractional Differential Equations[M]. San Diego:Academic Press, 1999.
  • 3Diethelm K, Walz G. Numerical Solution of Fractional Order Differential Equations by Extrapolation[J]. Numerical Algorithms(S1017-1389), 1997, 16: 231-253.
  • 4Diethelm K, Ford N J. Numerical Solution of the Bagley-torvik Equation[J]. BIT(S0006-3835), 2002, 42: 490-507.
  • 5Oustaloup A, Levron F, Mathieu B. Frequency-band Complex Noninteger Differentiator: Characterization and Synthesis[J]. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications(S 1057-7122), 2000, 47(1 ): 25-39.
  • 6Petras I, Podlubny I, O Leary P et al. Analogue Realization of Fractional Order Controllers[M]. Fakulta BERG, 2002.
  • 7Chen Y Q, Vinagre B M. A New ⅡR-type Digital Fractional Order Differentiator[J]. Signal Processing(S0165-1684), 2003, 83:2359-2365.
  • 8Edwards J T, Ford N J, Simpson A C. The Numerical Solution of Linear Multi-term Fractional Differential Equations: Systems of Equations[R]. Manchester Center for Numerical Computational Mathematics, 2002.

共引文献65

同被引文献256

引证文献29

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部