期刊文献+

角度编码染色体量子遗传算法 被引量:13

An Angle-Coding Chromosome Quantum Genetic Algorithm
下载PDF
导出
摘要 为了进一步减少QGA应用中的存储量,并提高其搜索效率,本文提出了一种新型角度编码染色体量子遗传算法。该算法基于量子比特在二维Hilbert空间上的极坐标表示,以角度编码染色体使原有量子染色体的基因位由复数对变成一个实数,存储量大大减少。同时,染色体的更新过程和基因位的变异过程都由矩阵与向量相乘简化成了角度加减,相应的染色体观察方式也由概率对比简化成了角度对比。这些措施的应用使算法在存储性能和时间性能上都有了极大的提高。实验结果表明,角度编码染色体量子遗传算法是一种十分有效的寻优算法,其性能较QGA有了明显的提高。 In order to decrease the storage quantity called AC-QGA is proposed, in which the chromosome and increase the search efficiency, a new quantum genetic algorithm is encoded by the angle in [0,π/2 ] based on the qubiCs polar coordinate representation in the two-dimensional Hilbert space. Thus, the representation of the gene-bit is changed from the complex number pair to a real number, and the storage quantity is decreased greatly. Meanwhile, the updating process of the chromosome and the mutation process of the gene-bit are simplified from the matrix multiplied by the vector to the angle addition or subtraction. The process of observing the chromosome is changed from probability comparison to angle comparison. The above-mentioned measures make the storage quality and the search efficiency of AC-QGA be increased greatly. The experiments show AC-QGA is very effective.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第3期75-79,共5页 Computer Engineering & Science
关键词 角度编码染色体 量子遗传算法 量子旋转门 量子非门 angle-coding chromosome quantum genetic algorithm quantum rotation gate quantum not gate
  • 相关文献

参考文献8

  • 1Narayanan A, Moore M. Quantum Inspired Genetic Algorithms[C]//Proc of the 1996 IEEE Int'l Conf on Evolutionary Computation (ICEC96), Nogaya, Japan: IEEE Press, 1996:61-66.
  • 2Han K-H, Kim J-H. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]// Proc of the 2000 Congress on Evolutionary Computation, 2000:1354-1360.
  • 3Han K-H, Park K-H, Lee C-H, et al. Parallel Quantum-Inspired Genetic Algorithm for Combinatorial Optimization Prohlem[C]//Proc of the 2001 Congress on Evolutionary Computation, 2001:14,22-1429.
  • 4Kim Y, Kim J-H, Han K-H. Quantum-Inspired Multiobjectire Evolutionary Algorithm for Multiobjective 0/1 Knapsack Problems[C]//Proe of the 2006 IEEE Congress on Evolutionary Computation, 2006 : 2601-2606.
  • 5Han K-H, Kim J-H. Quantum-Inspired Evolutionary Algorithms with a New Termination Criterion[J].IEEE Trans on Evolutionary Computation, 2004,8(2) : 156-169.
  • 6郭海燕,金炜东,李丽,罗碧华.分组量子遗传算法及其应用[J].西南科技大学学报,2004,19(1):18-21. 被引量:12
  • 7李映,焦李成.一种有效的基于并行量子进化算法的图像边缘检测方法[J].信号处理,2003,19(1):69-74. 被引量:20
  • 8杨俊安,邹谊,庄镇泉.基于多宇宙并行量子遗传算法的非线性盲源分离算法研究[J].电子与信息学报,2004,26(8):1210-1217. 被引量:10

二级参考文献20

  • 1赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1999..
  • 2K. H. Han, K. H. Park, C. H. Lee & J. H. Kim. Parallel quantum- inspired genetic algorithm for combinatorial optimization problems[ A]. Proceedings of IEEE International Conference on Evolutionary Computation[C], 2001, 1442 ~ 1429
  • 3A. Narayanan & M. Moore. Quantum - inspired genetic algorithm [A]. Proceedings of IEEE International Conference on Evolutionary Computation[C] , 1999, 61 -66
  • 4Tony Hey. Quantum Computing: an introduction[J]. Computing & Control Engineering Journal, 1999, (6): 105 - 112
  • 5Wang Lei, et al. The immune genetic algorithm and its coverge[A]. Signal Processings ICSP98. 1998 Fourth International Conference on Evolutionary Computation[C]. 1998. 1347 - 1350
  • 6H.L. Tan, S.B. Gelfand, and E.J. Delp. A comparative cost function approach to edge detection. IEEE Trans.System, Man and Cybernetic. 1989,19(6): 1337-1349.
  • 7H.L. Tan, S.B. Gelfand, and E.J.Delp A cost minimization approach to edge detection using simulated annealing.IEEE Trans. Pattern Analysis and Machine Intelligence.1991, 14(1): 3-18.
  • 8S.M.Bhandarkar, Y.Zhang and W.D.Potter. An edge detection technique using genetic algorithm-based optimization. Pattern Recognition. 1994, 27(9): 1159-1180.
  • 9S.T.Acton and A.C.Bovik. Anisotropic edge detection using mean field annealing. Procee~gs of IEEE International Conference on Acoustics, Speech and Signal Processing. 1992, II: 393-396.
  • 10A. Narayanan and M. Moore. Quantum-inspired genetic algorithm. Proceedings of IEEE International Conference on Evolutionary Computation. 1999:61-66.

共引文献33

同被引文献122

引证文献13

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部