期刊文献+

Fe48Co52 Alloy Nanowire Arrays: Effects of Magnetic Field Annealing

Fe48Co52 Alloy Nanowire Arrays: Effects of Magnetic Field Annealing
下载PDF
导出
摘要 The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found that the array's best annealing temperature and crys- talline structure did not show any apparent dependence on the treatment of applying a 3 kOe magnetic field along the wire during the annealing process. For arrays with small Dw or with large Di, the treatment of magnetic field annealing also had no obvious influence on their magnetic performances. However, such a magnetic field annealing constrained the shift of the easy magnetization direction and improved the coercivity and the squareness obviously for arrays with large Dw or with small Di. The difference in the intensity of the effective anisotropic field within the arrays was believed to be responsible for this different variation of the array's magnetic properties after magnetic field annealing.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期82-86,共5页 化学物理学报(英文)
基金 ACKNOWLEDGMENTS This work was supported by the National Nature Science Foundation of China (No.50171033), the National Key Project of Fundamental Research of China (No.2005CB623605), and the Scientific Research Foundation for the Doctor of Hefei University of Technology (No.035032).
关键词 FeCo alloy Nanowire array Magnetic field annealing Magnetic property Effective anisotropie field 磁场退火 磁场 晶体结构 磁化方向 退火温度
  • 相关文献

参考文献33

  • 1D. J. Sellmyer, M. Zheng, and R. Skomski, J. Phys.: Condens. Matter 13, R433 (2001).
  • 2R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).
  • 3M. Hernandez-Velez, Thin Solid Films 495, 51 (2006).
  • 4M. A. Kashi, A. Ramazani, and A. Khayyatian, J. Phys. D 39, 4130 (2006).
  • 5X. Y. Zhang, G. H. Wen, Y. F. Chan, R. K. Zheng, X. X. Zhang, and N. Wang, Appl. Phys. Lett. 83, 3341 (2003).
  • 6A. L. Friedman and L. Menon, J. Electrochem. Soc. 154, E68 (2007).
  • 7H. Zeng, M. Zheng, R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon, and S. Bandyopadhyay, J. Appl. Phys. 87, 4718 (2000).
  • 8S. Kato, H. Kitazawa, and G. Kido, J. Magn. Magn. Mater. 272~276, 1666 (2004).
  • 9G. B, Ji, J. M. Cao, F. Zhang, G. Y. Xu, H. L. Su, S. L. Tang, B. X. Gu, and Y. W. Du, J. Phys. Chem. B 109, 17100 (2005).
  • 10G. C. Han, B. Y. Zong, and Y. H. Wu, IEEE Trans. Magn. 38, 2562 (2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部